Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Microbiol ; 111(4): 1074-1092, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30693575

RESUMO

The mechanisms that restrict peptidoglycan biosynthesis to the pole during elongation and re-direct peptidoglycan biosynthesis to mid-cell during cell division in polar-growing Alphaproteobacteria are largely unknown. Here, we explore the role of early division proteins of Agrobacterium tumefaciens including three FtsZ homologs, FtsA and FtsW in the transition from polar growth to mid-cell growth and ultimately cell division. Although two of the three FtsZ homologs localize to mid-cell, exhibit GTPase activity and form co-polymers, only one, FtsZAT , is required for cell division. We find that FtsZAT is required not only for constriction and cell separation, but also for initiation of peptidoglycan synthesis at mid-cell and cessation of polar peptidoglycan biosynthesis. Depletion of FtsZAT in A. tumefaciens causes a striking phenotype: cells are extensively branched and accumulate growth active poles through tip splitting events. When cell division is blocked at a later stage by depletion of FtsA or FtsW, polar growth is terminated and ectopic growth poles emerge from mid-cell. Overall, this work suggests that A. tumefaciens FtsZ makes distinct contributions to the regulation of polar growth and cell division.


Assuntos
Agrobacterium tumefaciens/citologia , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Regulação Bacteriana da Expressão Gênica , Agrobacterium tumefaciens/genética , Proteínas de Bactérias/genética , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Peptidoglicano/metabolismo
2.
J Bacteriol ; 198(7): 1149-59, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26833409

RESUMO

UNLABELLED: The dimorphic alphaproteobacterium Prosthecomicrobium hirschii has both short-stalked and long-stalked morphotypes. Notably, these morphologies do not arise from transitions in a cell cycle. Instead, the maternal cell morphology is typically reproduced in daughter cells, which results in microcolonies of a single cell type. In this work, we further characterized the short-stalked cells and found that these cells have a Caulobacter-like life cycle in which cell division leads to the generation of two morphologically distinct daughter cells. Using a microfluidic device and total internal reflection fluorescence (TIRF) microscopy, we observed that motile short-stalked cells attach to a surface by means of a polar adhesin. Cells attached at their poles elongate and ultimately release motile daughter cells. Robust biofilm growth occurs in the microfluidic device, enabling the collection of synchronous motile cells and downstream analysis of cell growth and attachment. Analysis of a draft P. hirschii genome sequence indicates the presence of CtrA-dependent cell cycle regulation. This characterization of P. hirschii will enable future studies on the mechanisms underlying complex morphologies and polymorphic cell cycles. IMPORTANCE: Bacterial cell shape plays a critical role in regulating important behaviors, such as attachment to surfaces, motility, predation, and cellular differentiation; however, most studies on these behaviors focus on bacteria with relatively simple morphologies, such as rods and spheres. Notably, complex morphologies abound throughout the bacteria, with striking examples, such as P. hirschii, found within the stalked Alphaproteobacteria. P. hirschii is an outstanding candidate for studies of complex morphology generation and polymorphic cell cycles. Here, the cell cycle and genome of P. hirschii are characterized. This work sets the stage for future studies of the impact of complex cell shapes on bacterial behaviors.


Assuntos
Alphaproteobacteria/citologia , Alphaproteobacteria/fisiologia , Ciclo Celular/fisiologia , Técnicas Bacteriológicas , Biofilmes/crescimento & desenvolvimento
3.
Appl Environ Microbiol ; 82(16): 5015-25, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27287320

RESUMO

UNLABELLED: Mechanistic studies of many processes in Agrobacterium tumefaciens have been hampered by a lack of genetic tools for characterization of essential genes. In this study, we used a Tn7-based method for inducible control of transcription from an engineered site on the chromosome. We demonstrate that this method enables tighter control of inducible promoters than plasmid-based systems and can be used for depletion studies. The method enables the construction of depletion strains to characterize the roles of essential genes in A. tumefaciens Here, we used the strategy to deplete the alphaproteobacterial master regulator CtrA and found that depletion of this essential gene results in dramatic rounding of cells, which become nonviable. IMPORTANCE: Agrobacterium tumefaciens is a bacterial plant pathogen and natural genetic engineer. Thus, studies of essential processes, including cell cycle progression, DNA replication and segregation, cell growth, and division, may provide insights for limiting disease or improving biotechnology applications.


Assuntos
Agrobacterium tumefaciens/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Genes Essenciais , Elementos de DNA Transponíveis , Regiões Promotoras Genéticas
4.
Front Microbiol ; 9: 681, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29686659

RESUMO

In A. tumefaciens, the essential FtsZ protein is located at the growth pole before shifting to the mid-cell right before division. Loss of FtsZ causes a halt in cell separation and lysis of cells. To understand how FtsZ polymerization is regulated to properly localize the FtsZ ring at the mid-cell, we have conducted a systematic characterization of the Min system in A. tumefaciens. Our findings indicate that the Min system is not required for cell survival. Yet, we find that the deletion of either minE or minCDE results in a broad cell size distribution, including an increase in the proportion of short and long cells. We observe that the site of constriction is misplaced in the minE or minCDE deletion strains allowing for short cells to arise from sites of constriction near the cell poles. Remarkably, the short cells are viable and contain DNA. In order to observe chromosome replication and segregation in these strains, YFP-ParB is used as a proxy to track the origin of replication as cells elongate and divide. In the absence of the Min proteins, duplication and segregation of the origin of replication is frequently delayed. Taken together, our data suggest that the Min system contributes to the proper regulation of FtsZ placement and subsequent cell division. Furthermore, the failure to precisely place FtsZ rings at mid-cell in the min mutants impacts other cell cycle features including chromosome segregation.

5.
J Vis Exp ; (129)2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29286454

RESUMO

Core cellular processes such as DNA replication and segregation, protein synthesis, cell wall biosynthesis, and cell division rely on the function of proteins which are essential for bacterial survival. A series of target-specific dyes can be used as probes to better understand these processes. Staining with lipophilic dyes enables the observation of membrane structure, visualization of lipid microdomains, and detection of membrane blebs. Use of fluorescent-d-amino acids (FDAAs) to probe the sites of peptidoglycan biosynthesis can indicate potential defects in cell wall biogenesis or cell growth patterning. Finally, nucleic acid stains can indicate possible defects in DNA replication or chromosome segregation. Cyanine DNA stains label living cells and are suitable for time-lapse microscopy enabling real-time observations of nucleoid morphology during cell growth. Protocols for cell labeling can be applied to protein depletion mutants to identify defects in membrane structure, cell wall biogenesis, or chromosome segregation. Furthermore, time-lapse microscopy can be used to monitor morphological changes as an essential protein is removed and can provide additional insights into protein function. For example, the depletion of essential cell division proteins results in filamentation or branching, whereas the depletion of cell growth proteins may cause cells to become shorter or rounder. Here, protocols for cell growth, target-specific labeling, and time-lapse microscopy are provided for the bacterial plant pathogen Agrobacterium tumefaciens. Together, target-specific dyes and time-lapse microscopy enable characterization of essential processes in A. tumefaciens. Finally, the protocols provided can be readily modified to probe essential processes in other bacteria.


Assuntos
Bactérias/crescimento & desenvolvimento , Microscopia de Fluorescência/métodos
6.
Genome Announc ; 3(6)2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26586892

RESUMO

We report the draft genome sequence of Prosthecomicrobium hirschii ATCC 27832(T), an alphaproteobacterium with remarkable cellular morphologies. The chromosome comprises 6,484,983 bp in six scaffolds with a G+C content of 69%, and 6,066 potential coding sequences.

7.
Curr Biol ; 21(12): 1018-24, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21658943

RESUMO

BACKGROUND: Chromosome instability is thought to be a major contributor to cancer malignancy and birth defects. For balanced chromosome segregation in mitosis, kinetochores on sister chromatids bind and pull on microtubules emanating from opposite spindle poles. This tension contributes to the correction of improper kinetochore attachments and is opposed by the cohesin complex that holds the sister chromatids together. Normally, within minutes of alignment at the metaphase plate, chromatid cohesion is released, allowing each cohort of chromatids to move synchronously to opposite poles in anaphase, an event closely coordinated with mitotic exit. RESULTS: Here we show that during experimentally induced metaphase delay, spindle pulling forces can cause asynchronous chromatid separation, a phenomenon we term "cohesion fatigue." Cohesion fatigue is not blocked by inhibition of Plk1, a kinase essential for the "prophase pathway" of cohesin release from chromosomes, or by depletion of separase, the protease that normally drives chromatid separation at anaphase. Cohesion fatigue is inhibited by drug-induced depolymerization of mitotic spindle microtubules and by experimentally increasing the levels of cohesin on mitotic chromosomes. In cells undergoing cohesion fatigue, cohesin proteins remain associated with the separated chromatids. CONCLUSION: In cells arrested at metaphase, pulling forces originating from kinetochore-microtubule interactions can, with time, rupture normal sister chromatid cohesion. This cohesion fatigue, resulting in unscheduled chromatid separation in cells delayed at metaphase, constitutes a previously overlooked source for chromosome instability in mitosis and meiosis.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Cromátides , Proteínas Cromossômicas não Histona/fisiologia , Metáfase , Células HeLa , Humanos , Coesinas
8.
Curr Biol ; 19(17): 1467-72, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19646878

RESUMO

The mitotic spindle checkpoint monitors proper bipolar attachment of chromosomes to the mitotic spindle. Previously, depletion of the novel kinetochore complex Ska1/Ska2 was found to induce a metaphase delay. By using bioinformatics, we identified C13orf3, predicted to associate with kinetochores. Recently, three laboratories independently indentified C13orf3 as an additional Ska complex component, and therefore we adopted the name Ska3. We found that cells depleted of Ska3 by RNAi achieve metaphase alignment but fail to silence the spindle checkpoint or enter anaphase. After hours of metaphase arrest, chromatids separate but retain robust kinetochore-microtubule attachments. Ska3-depleted cells accumulate high levels of the checkpoint protein Bub1 at kinetochores. Ska3 protein accumulation at kinetochores in prometaphase is dependent on Sgo1 protein. Sgo1, which accumulates at the centromeres earlier, in prophase, is not dependent on Ska3. Sgo1-depleted cells show a stronger premature chromatid separation phenotype than those depleted of Ska3. We hypothesize that Ska3 functions to coordinate checkpoint signaling from the microtubule binding sites within a kinetochore by laterally linking the individual binding sites. We suggest that this network plays a major role in silencing the spindle checkpoint when chromosomes are aligned at metaphase to allow timely anaphase onset and mitotic exit.


Assuntos
Cromossomos Humanos , Proteínas Associadas aos Microtúbulos/fisiologia , Mitose/fisiologia , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Biologia Computacional , Células HeLa , Humanos , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitose/genética , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fuso Acromático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA