Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Planta ; 244(6): 1315-1328, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27541496

RESUMO

MAIN CONCLUSION: AtNPF3.1 gene expression is promoted by limiting nitrogen nutrition. Atnpf3.1 mutants are affected in hypocotyl elongation and seed germination under conditions of low-nitrate availability. The NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER (NPF) family encodes nitrate or peptides transporters, some of which are also able to transport hormones. AtNPF3.1 has been described as a nitrate/nitrite/gibberellin transporter. Until now only its gibberellins (GAs) transport capacity have been proven in planta. We further analyzed its substrate specificity towards different GA species using a yeast heterologous system which revealed that (1) NPF3.1 transported not only bioactive GAs but also their precursors and metabolites and (2) the GAs' import activity of NPF3.1 was not affected by the presence of exogenous nitrate. Gene expression analysis along with germination assays and hypocotyl length measurements of loss of function mutants was used to understand the in planta role of NPF3.1. GUS staining revealed that this gene is expressed mainly in the endodermis of roots and hypocotyls, in shoots, stamens, and dry seeds. Germination assays in the presence of paclobutrazol, a GA biosynthesis inhibitor, revealed that the germination rate of npf3.1 mutants was lower compared to wild type when GA was added at the same time. Likewise, hypocotyl length measurements showed that the npf3.1 mutants were less sensitive to exogenous GA addition in the presence of paclobutrazol, compared to wild type. Moreover, this phenotype was observed only when plants were grown on low-nitrate supply. In addition, NPF3.1 gene expression was upregulated by low exogenous nitrate concentrations and the npf3.1 mutants exhibited a not yet described GA-related phenotype under these conditions. All together, these results indicated that NPF3.1 is indeed involved in GAs transport in planta under low-nitrate conditions.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Nitrogênio/fisiologia , Proteínas de Transporte de Ânions/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Giberelinas/metabolismo , Microscopia Confocal , Transportadores de Nitrato , Nitratos/metabolismo , Nitratos/fisiologia , Nitrogênio/metabolismo , Fenótipo , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia
2.
Nat Genet ; 39(7): 896-900, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17589509

RESUMO

Most agronomic traits of importance, whether physiological (such as nutrient use efficiency) or developmental (such as flowering time), are controlled simultaneously by multiple genes and their interactions with the environment. Here, we show that variation in sulfate content between wild Arabidopsis thaliana accessions Bay-0 and Shahdara is controlled by a major quantitative trait locus that results in a strong interaction with nitrogen availability in the soil. Combining genetic and biochemical results and using a candidate gene approach, we have cloned the underlying gene, showing how a single-amino acid substitution in a key enzyme of the assimilatory sulfate reduction pathway, adenosine 5'-phosphosulfate reductase, is responsible for a decrease in enzyme activity, leading to sulfate accumulation in the plant. This work illustrates the potential of natural variation as a source of new alleles of known genes, which can aid in the study of gene function and metabolic pathway regulation. Our new insights on sulfate assimilation may have an impact on sulfur fertilizer use and stress defense improvement.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Variação Genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/fisiologia , Sulfatos/metabolismo , Proteínas de Arabidopsis/fisiologia , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/fisiologia , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Locos de Características Quantitativas
3.
Plant J ; 80(2): 230-41, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25065551

RESUMO

Nitrogen is a key mineral nutrient playing a crucial role in plant growth and development. Understanding the mechanisms of nitrate uptake from the soil and distribution through the plant in response to nitrogen starvation is an important step on the way to improve nitrogen uptake and utilization efficiency for better growth and productivity of plants, and to prevent negative effects of nitrogen fertilizers on the environment and human health. In this study, we show that Arabidopsis NITRATE TRANSPORTER 2.5 (NRT2.5) is a plasma membrane-localized high-affinity nitrate transporter playing an essential role in adult plants under severe nitrogen starvation. NRT2.5 expression is induced under nitrogen starvation and NRT2.5 becomes the most abundant transcript amongst the seven NRT2 family members in shoots and roots of adult plants after long-term starvation. GUS reporter analyses showed that NRT2.5 is expressed in the epidermis and the cortex of roots at the root hair zone and in minor veins of mature leaves. Reduction of NRT2.5 expression resulted in a decrease in high-affinity nitrate uptake without impacting low-affinity uptake. In the background of the high-affinity nitrate transporter mutant nrt2.4, an nrt2.5 mutation reduced nitrate levels in the phloem of N-starved plants further than in the single nrt2.4 mutants. Growth analyses of multiple mutants between NRT2.1, NRT2.2, NRT2.4, and NRT2.5 revealed that NRT2.5 is required to support growth of nitrogen-starved adult plants by ensuring the efficient uptake of nitrate collectively with NRT2.1, NRT2.2 and NRT2.4 and by taking part in nitrate loading into the phloem during nitrate remobilization.


Assuntos
Proteínas de Transporte de Ânions/fisiologia , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo
4.
Plant Cell ; 24(1): 245-58, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22227893

RESUMO

Plants have evolved a variety of mechanisms to adapt to N starvation. NITRATE TRANSPORTER2.4 (NRT2.4) is one of seven NRT2 family genes in Arabidopsis thaliana, and NRT2.4 expression is induced under N starvation. Green fluorescent protein and ß-glucuronidase reporter analyses revealed that NRT2.4 is a plasma membrane transporter expressed in the epidermis of lateral roots and in or close to the shoot phloem. The spatiotemporal expression pattern of NRT2.4 in roots is complementary with that of the major high-affinity nitrate transporter NTR2.1. Functional analysis in Xenopus laevis oocytes and in planta showed that NRT2.4 is a nitrate transporter functioning in the high-affinity range. In N-starved nrt2.4 mutants, nitrate uptake under low external supply and nitrate content in shoot phloem exudates was decreased. In the absence of NRT2.1 and NRT2.2, loss of function of NRT2.4 (triple mutants) has an impact on biomass production under low nitrate supply. Together, our results demonstrate that NRT2.4 is a nitrate transporter that has a role in both roots and shoots under N starvation.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nitrogênio/metabolismo , Proteínas de Transporte de Ânions/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Microscopia Confocal , Transportadores de Nitrato , Nitrogênio/deficiência
5.
J Exp Bot ; 65(19): 5683-96, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25262566

RESUMO

Brachypodium distachyon was proposed as a model species for genetics and molecular genomics in cereals less than 10 years ago. It is now established as a standard for research on C3 cereals on a variety of topics, due to its close phylogenetic relationship with Triticeae crops such as wheat and barley, and to its simple genome, its minimal growth requirement, and its short life cycle. In this review, we first highlight the tools and resources for Brachypodium that are currently being developed and made available by the international community. We subsequently describe how this species has been used for comparative genomic studies together with cereal crops, before illustrating major research fields in which Brachypodium has been successfully used as a model: cell wall synthesis, plant-pathogen interactions, root architecture, and seed development. Finally, we discuss the usefulness of research on Brachypodium in order to improve nitrogen use efficiency in cereals, with the aim of reducing the amount of applied fertilizer while increasing the grain yield. Several paths are considered, namely an improvement of either nitrogen remobilization from the vegetative organs, nitrate uptake from the soil, or nitrate assimilation by the plant. Altogether, these examples position the research on Brachypodium as at an intermediate stage between basic research, carried out mainly in Arabidopsis, and applied research carried out on wheat and barley, enabling a complementarity of the studies and reciprocal benefits.


Assuntos
Brachypodium/genética , Produtos Agrícolas/genética , Genoma de Planta/genética , Genômica , Nitrogênio/metabolismo , Brachypodium/metabolismo , Parede Celular/metabolismo , Produtos Agrícolas/metabolismo , Grão Comestível/genética , Hordeum/genética , Interações Hospedeiro-Patógeno , Modelos Biológicos , Filogenia , Raízes de Plantas/genética , Sementes/genética , Triticum/genética
6.
J Exp Bot ; 65(3): 789-98, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24532451

RESUMO

Plants have developed adaptive responses allowing them to cope with nitrogen (N) fluctuation in the soil and maintain growth despite changes in external N availability. Nitrate is the most important N form in temperate soils. Nitrate uptake by roots and its transport at the whole-plant level involves a large panoply of transporters and impacts plant performance. Four families of nitrate-transporting proteins have been identified so far: nitrate transporter 1/peptide transporter family (NPF), nitrate transporter 2 family (NRT2), the chloride channel family (CLC), and slow anion channel-associated homologues (SLAC/SLAH). Nitrate transporters are also involved in the sensing of nitrate. It is now well established that plants are able to sense external nitrate availability, and hence that nitrate also acts as a signal molecule that regulates many aspects of plant intake, metabolism, and gene expression. This review will focus on a global picture of the nitrate transporters so far identified and the recent advances in the molecular knowledge of the so-called primary nitrate response, the rapid regulation of gene expression in response to nitrate. The recent discovery of the NIN-like proteins as master regulators for nitrate signalling has led to a new understanding of the regulation cascade.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Nitratos/metabolismo , Transdução de Sinais , Proteínas de Transporte de Ânions/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Modelos Biológicos , Transportadores de Nitrato , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Solo/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
J Exp Bot ; 65(3): 885-93, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24532452

RESUMO

NRT2.7 is a seed-specific high-affinity nitrate transporter controlling nitrate content in Arabidopsis mature seeds. The objective of this work was to analyse further the consequences of the nrt2.7 mutation for the seed metabolism. This work describes a new phenotype for the nrt2.7-2 mutant allele in the Wassilewskija accession, which exhibited a distinctive pale-brown seed coat that is usually associated with a defect in flavonoid oxidation. Indeed, this phenotype resembled those of tt10 mutant seeds defective in the laccase-like enzyme TT10/LAC15, which is involved in the oxidative polymerization of flavonoids such as the proantocyanidins (PAs) (i.e. epicatechin monomers and PA oligomers) and flavonol glycosides. nrt2.7-2 and tt10-2 mutant seeds displayed the same higher accumulation of PAs, but were partially distinct, since flavonol glycoside accumulation was not affected in the nrt2.7-2 seeds. Moreover, measurement of in situ laccase activity excluded a possibility of the nrt2.7-2 mutation affecting the TT10 enzymic activity at the early stage of seed development. Functional complementation of the nrt2.7-2 mutant by overexpression of a full-length NRT2.7 cDNA clearly demonstrated the link between the nrt2.7 mutation and the PA phenotype. However, the PA-related phenotype of nrt2.7-2 seeds was not strictly correlated to the nitrate content of seeds. No correlation was observed when nitrate was lowered in seeds due to limited nitrate nutrition of plants or to lower nitrate storage capacity in leaves of clca mutants deficient in the vacuolar anionic channel CLCa. All together, the results highlight a hitherto-unknown function of NRT2.7 in PA accumulation/oxidation.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Nitratos/metabolismo , Proantocianidinas/metabolismo , Transdução de Sinais , Alelos , Proteínas de Transporte de Ânions/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cor , Flavonoides/análise , Flavonoides/metabolismo , Expressão Gênica , Teste de Complementação Genética , Homozigoto , Lacase/genética , Lacase/metabolismo , Mutação , Nitratos/análise , Oxirredução , Fenótipo , Sementes/genética , Sementes/metabolismo
8.
Plant Physiol ; 157(3): 1255-82, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21900481

RESUMO

Nitrogen (N) is an essential macronutrient for plants. N levels in soil vary widely, and plants have developed strategies to cope with N deficiency. However, the regulation of these adaptive responses and the coordinating signals that underlie them are still poorly understood. The aim of this study was to characterize N starvation in adult Arabidopsis (Arabidopsis thaliana) plants in a spatiotemporal manner by an integrative, multilevel global approach analyzing growth, metabolites, enzyme activities, and transcript levels. We determined that the remobilization of N and carbon compounds to the growing roots occurred long before the internal N stores became depleted. A global metabolite analysis by gas chromatography-mass spectrometry revealed organ-specific differences in the metabolic adaptation to complete N starvation, for example, for several tricarboxylic acid cycle intermediates, but also for carbohydrates, secondary products, and phosphate. The activities of central N metabolism enzymes and the capacity for nitrate uptake adapted to N starvation by favoring N remobilization and by increasing the high-affinity nitrate uptake capacity after long-term starvation. Changes in the transcriptome confirmed earlier studies and added a new dimension by revealing specific spatiotemporal patterns and several unknown N starvation-regulated genes, including new predicted small RNA genes. No global correlation between metabolites, enzyme activities, and transcripts was evident. However, this multilevel spatiotemporal global study revealed numerous new patterns of adaptation mechanisms to N starvation. In the context of a sustainable agriculture, this work will give new insight for the production of crops with increased N use efficiency.


Assuntos
Adaptação Fisiológica , Arabidopsis/fisiologia , Nitrogênio/deficiência , Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , Adaptação Fisiológica/efeitos dos fármacos , Aminoácidos/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efeitos dos fármacos , Biomassa , Metabolismo dos Carboidratos/efeitos dos fármacos , Ácidos Carboxílicos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes Reguladores/genética , Modelos Biológicos , Nitratos/metabolismo , Nitrogênio/metabolismo , Nitrogênio/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/enzimologia , Estatística como Assunto , Fatores de Tempo , Transcriptoma/genética
9.
J Exp Bot ; 63(1): 91-105, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21914659

RESUMO

Our understanding of plant growth in response to nitrogen (N) supply is mainly based on studies of mutants and transformants. This study explored the natural variability of Arabidopsis thaliana first to find out its global response to N availability and secondly to characterize the plasticity for growth and N metabolism among 23 genetically distant accessions under normal (N+), limited (N-), and starved (N0) N supplies. Plant growth was estimated by eight morphological traits characterizing shoot and root growth and 10 metabolic parameters that represented N and carbon metabolism. Most of the studied traits showed a large variation linked to genotype and nutrition. Furthermore, Arabidopsis growth was coordinated by master traits such as the shoot to root ratio of nitrate content in N+, root fresh matter and root amino acids in N-, and shoot fresh matter together with root thickness in N0. The 23 accessions could be gathered into four different groups, according to their growth in N+, N-, and N0. Phenotypic profiling characterized four different adaptative responses to N- and N0. Class 1 tolerated N limitation with the smallest decrease in shoot and root biomass compared with N+, while class 2 presented the highest resistance to N starvation by preferential increased root growth, huge starch accumulation, and high shoot nitrate content. In contrast, class 3 plants could tolerate neither N limitation nor N starvation. Small plants of class 4 were different, with shoot biomass barely affected in N- and root biomass unaffected in N0.


Assuntos
Arabidopsis/fisiologia , Variação Genética , Nitrogênio/metabolismo , Análise de Variância , Arabidopsis/metabolismo
10.
Plant J ; 64(2): 291-303, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21070409

RESUMO

The PII protein is an integrator of central metabolism and energy levels. In Arabidopsis, allosteric sensing of cellular energy and carbon levels alters the ability of PII to interact with target enzymes such as N-acetyl-l-glutamate kinase and heteromeric acetyl-coenzyme A carboxylase, thereby modulating the biological activity of these plastidial ATP- and carbon-consuming enzymes. A quantitative reverse transcriptase-polymerase chain reaction approach revealed a threefold induction of the AtGLB1 gene (At4g01900) encoding PII during early seed maturation. The activity of the AtGLB1 promoter was consistent with this pattern. A complementary set of molecular and genetic analyses showed that WRINKLED1, a transcription factor known to induce glycolytic and fatty acid biosynthetic genes at the onset of seed maturation, directly controls AtGLB1 expression. Immunoblot analyses and immunolocalization experiments using anti-PII antibodies established that PII protein levels faithfully reflected AtGLB1 mRNA accumulation. At the subcellular level, PII was observed in plastids of maturing embryos. To further investigate the function of PII in seeds, comprehensive functional analyses of two pII mutant alleles were carried out. A transient increase in fatty acid production was observed in mutant seeds at a time when PII protein content was found to be maximal in wild-type seeds. Moreover, minor though statistically significant modifications of the fatty acid composition were measured in pII seeds, which exhibited decreased amounts of modified (elongated, desaturated) fatty acid species. The results obtained outline a role for PII in the fine tuning of fatty acid biosynthesis and partitioning in seeds.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Graxos/biossíntese , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Sementes/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Modelos Biológicos , Mutação , Plastídeos/metabolismo , Regiões Promotoras Genéticas , Sementes/crescimento & desenvolvimento
11.
J Exp Bot ; 62(4): 1349-59, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21193579

RESUMO

Under temperate climates and in cultivated soils, nitrate is the most important source of nitrogen (N) available for crops and, before its reduction and assimilation into amino acids, must enter the root cells and then move in the whole plant. The aim of this review is to provide an overall picture of the numerous membrane proteins that achieve these processes by being localized in different compartments and in different tissues. Nitrate transporters (NRT) from the NRT1 and NRT2 families ensure the capacity of root cells to take up nitrate, through high- and low-affinity systems (HATS and LATS) depending on nitrate concentrations in the soil solution. Other members of the NRT1 family are involved subsequently in loading and unloading of nitrate to and from the xylem vessels, allowing its distribution to aerial organs or its remobilization from old leaves. Once in the cell, nitrate can be stored in the vacuole by passing through the tonoplast, a step that involves chloride channels (CLC) or a NRT2 member. Finally, with the exception of one NRT1 member, the transport of nitrite towards the chloroplast is still largely unknown. All these fluxes are controlled by key factors, the 'major tour operators' like the internal nutritional status of the plant but also by external abiotic factors.


Assuntos
Arabidopsis/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Sementes/metabolismo , Solo , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Transporte de Ânions/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Transporte Biológico , Modelos Biológicos , Transportadores de Nitrato , Nitratos/química
12.
Plant J ; 57(3): 426-35, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18826430

RESUMO

Nitrate is an essential nutrient, and is involved in many adaptive responses of plants, such as localized proliferation of roots, flowering or stomatal movements. How such nitrate-specific mechanisms are regulated at the molecular level is poorly understood. Although the Arabidopsis ANR1 transcription factor appears to control stimulation of lateral root elongation in response to nitrate, no regulators of nitrate assimilation have so far been identified in higher plants. Legume-specific symbiotic nitrogen fixation is under the control of the putative transcription factor, NIN, in Lotus japonicus. Recently, the algal homologue NIT2 was found to regulate nitrate assimilation. Here we report that Arabidopsis thaliana NIN-like protein 7 (NLP7) knockout mutants constitutively show several features of nitrogen-starved plants, and that they are tolerant to drought stress. We show that nlp7 mutants are impaired in transduction of the nitrate signal, and that the NLP7 expression pattern is consistent with a function of NLP7 in the sensing of nitrogen. Translational fusions with GFP showed a nuclear localization for the NLP7 putative transcription factor. We propose NLP7 as an important element of the nitrate signal transduction pathway and as a new regulatory protein specific for nitrogen assimilation in non-nodulating plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Nitratos/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutação , Nitrogênio/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA de Plantas/genética , Estresse Fisiológico , Fatores de Transcrição/genética
13.
J Exp Bot ; 61(9): 2293-302, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20237091

RESUMO

Eighteen accessions of Arabidopsis thaliana were grown with low (N-) and high (N+) nitrogen supply. N uptake was monitored by feeding plants with 15N-enriched nutritive solution over 24 h. Biomass [fresh matter (FM) and dry matter (DM)], N concentration (N%), and 15N content were monitored and computed to determine the nitrogen use efficiency (NUE) and nitrogen uptake efficiency (NupE). NUE has been estimated as the ratio between biomass and N concentration (DM/N%) and NupE as the concentration of 15N in plants [microg (g(-1) DM)]. Accession traits were analysed to detect common and individual genotype features. The genetic variation in NUE at high N input was mainly explained by variation in N uptake. Even though plants managed N uptake and N metabolism differently under N+ and N-, NUE was similar in these two conditions, showing that NUE was exclusively genetically determined. Hierarchical classification revealed that the physiological classes arising were similar under N- and N+. Both wasteful and efficient genotypes were detected. Three extreme genotypes, Col-0, Bur-0, and Tsu-0, were noted. Bur-0 and Tsu-0 exhibited high NUE and large biomass. Col-0 showed the reverse: low NUE and low biomass. Bur-0 appeared poorly tolerant of a high N supply. The present data will facilitate the choice of Arabidopsis accessions as parents of recombinant inbred line populations suitable for the mapping of quantitiative trait loci related to NUE, NupE, and N storage capacity.


Assuntos
Arabidopsis/metabolismo , Compostos de Cálcio/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Óxidos/metabolismo , Arabidopsis/genética , Biomassa , Genótipo
14.
Ann Bot ; 105(7): 1141-57, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20299346

RESUMO

BACKGROUND: Productive agriculture needs a large amount of expensive nitrogenous fertilizers. Improving nitrogen use efficiency (NUE) of crop plants is thus of key importance. NUE definitions differ depending on whether plants are cultivated to produce biomass or grain yields. However, for most plant species, NUE mainly depends on how plants extract inorganic nitrogen from the soil, assimilate nitrate and ammonium, and recycle organic nitrogen. Efforts have been made to study the genetic basis as well as the biochemical and enzymatic mechanisms involved in nitrogen uptake, assimilation, and remobilization in crops and model plants. The detection of the limiting factors that could be manipulated to increase NUE is the major goal of such research. SCOPE: An overall examination of the physiological, metabolic, and genetic aspects of nitrogen uptake, assimilation and remobilization is presented in this review. The enzymes and regulatory processes manipulated to improve NUE components are presented. Results obtained from natural variation and quantitative trait loci studies are also discussed. CONCLUSIONS: This review presents the complexity of NUE and supports the idea that the integration of the numerous data coming from transcriptome studies, functional genomics, quantitative genetics, ecophysiology and soil science into explanatory models of whole-plant behaviour will be promising.


Assuntos
Nitrogênio/metabolismo , Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Locos de Características Quantitativas/genética
15.
New Phytol ; 183(1): 88-94, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19402883

RESUMO

* In plants, the knowledge of the molecular identity and functions of anion channels are still very limited, and are almost restricted to the large ChLoride Channel (CLC) family. In Arabidopsis thaliana, some genetic evidence has suggested a role for certain AtCLC protein members in the control of plant nitrate levels. In this context, AtClCa has been demonstrated to be involved in nitrate transport into the vacuole, thereby participating in cell nitrate homeostasis. * In this study, analyses of T-DNA insertion mutants within the AtClCa and AtClCe genes revealed common phenotypic traits: a lower endogenous nitrate content; a higher nitrite content; a reduced nitrate influx into the root; and a decreased expression of several genes encoding nitrate transporters. * This set of nitrate-related phenotypes, displayed by clca and clce mutant plants, showed interconnecting roles of AtClCa and AtClCe in nitrate homeostasis involving two different endocellular membranes. * In addition, it revealed cross-talk between two nitrate transporter families participating in nitrate assimilation pathways. The contribution to nitrate homeostasis at the cellular level of members of these different families is discussed.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Canais de Cloreto/metabolismo , Genes de Plantas , Transporte de Íons/fisiologia , Nitratos/metabolismo , Nitritos/metabolismo , Proteínas de Transporte de Ânions/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Canais de Cloreto/genética , DNA Bacteriano , Membranas Intracelulares/metabolismo , Redes e Vias Metabólicas , Mutação , Transportadores de Nitrato , Fenótipo , Receptor Cross-Talk , Transdução de Sinais , Vacúolos/metabolismo
16.
J Exp Bot ; 59(4): 779-91, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18304979

RESUMO

In a low-input agricultural context, plants facing temporal nutrient deficiencies need to be efficient. By comparing the effects of NO(3)(-)-starvation in two lines of Arabidopsis thaliana (RIL282 and 432 from the Bay-0xShahdara population), this study aimed to screen the physiological mechanisms allowing one genotype to withstand NO(3)(-)-deprivation better than another and to rate the relative importance of processes such as nitrate uptake, storage, and recycling. These two lines, chosen because of their contrasted shoot N contents for identical shoot biomass under N-replete conditions, underwent a 10 d nitrate starvation after 28 d of culture at 5 mM NO(3)(-). It was demonstrated that line 432 coped better with NO(3)(-)-starvation, producing higher shoot and root biomass and sustaining maximal growth for a longer time. However, both lines exhibited similar features under NO(3)(-)-starvation conditions. In particular, the nitrate pool underwent the same drastic and early depletion, whereas the protein pool was increased to a similar extent. Nitrate remobilization rate was identical too. It was proportional to nitrate content in both shoots and roots, but it was higher in roots. One difference emerged: line 432 had a higher nitrate content at the beginning of the starvation phase. This suggests that to overcome NO(3)(-)-starvation, line 432 did not directly rely on the N pool composition, nor on nitrate remobilization efficiency, but on higher nitrate storage capacities prior to NO(3)(-)-starvation. Moreover, the higher resistance of 432 corresponded to a higher nitrate uptake capacity and a 2-9-fold higher expression of AtNRT1.1, AtNRT2.1, and AtNRT2.4 genes, suggesting that the corresponding nitrate transporters may be preferentially involved under fluctuating N supply conditions.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Transporte Biológico Ativo/fisiologia , Carbono/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Isótopos de Nitrogênio , Componentes Aéreos da Planta/crescimento & desenvolvimento , Inanição , Fatores de Tempo
17.
Plant Physiol Biochem ; 45(8): 630-5, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17583518

RESUMO

Arabidopsis AtNRT2.1 protein is the best characterized high affinity nitrate transporter in higher plants. However, nothing is known about its sub-cellular localization. In this work, we used GFP imaging to follow the targeting of the AtNRT2.1 protein to the different cell membranes. A polyclonal antibody was also raised against a peptide derived from the AtNRT2.1 sequence. Comparison of wild type and mutant plant extracts showed that this antibody recognized specifically the AtNRT2.1 protein. Microsomal membranes were fractionated on sucrose gradients and immunological detections were performed on the different fractions. Altogether, our results demonstrate that the AtNRT2.1 protein is located in the plasma membrane of the root cells.


Assuntos
Proteínas de Transporte de Ânions/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Membrana Celular/metabolismo , Raízes de Plantas/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Fluorescência Verde/metabolismo , Membranas Intracelulares/metabolismo , Microscopia Confocal , Microssomos/metabolismo , Mutação , Nitratos/metabolismo , Plantas Geneticamente Modificadas
18.
Genetics ; 163(2): 711-22, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12618408

RESUMO

In plants, water and anion parameters are linked, for example through the integration of nutritional signaling and the response to diverse stress. In this work, Arabidopsis thaliana is used as a model system to dissect the genetic variation of these parameters by quantitative trait loci (QTL) mapping in the 415 recombinant inbred lines of the Bay-0 x Shahdara population. Water, nitrate, chloride, and phosphate contents were measured at the vegetative stage in the shoots of plants grown in controlled conditions. Two contrasting nitrogen (N) conditions were studied, one leading to the complete depletion of the nitrate pool in the plants. Most of the observed genetic variation was identified as QTL, with medium but also large phenotypic contributions. QTL colocalization provides a genetic basis for the correlation between water and nitrate contents in nonlimiting N conditions and water and chloride contents in limiting N conditions. The 34 new QTL described here represent at least 19 loci polymorphic between Bay-0 and Shahdara; some may correspond to known genes from water/anion transport systems, while others clearly identify new genes controlling or interacting with water/anion absorption and accumulation. Interestingly, flowering-time genes probably play a role in the regulation of water content in our conditions.


Assuntos
Ânions/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Nitrogênio/metabolismo , Água/metabolismo , Mapeamento Cromossômico , Variação Genética , Fenótipo , Locos de Características Quantitativas
19.
Trends Plant Sci ; 19(1): 5-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24055139

RESUMO

Members of the plant NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER (NRT1/PTR) family display protein sequence homology with the SLC15/PepT/PTR/POT family of peptide transporters in animals. In comparison to their animal and bacterial counterparts, these plant proteins transport a wide variety of substrates: nitrate, peptides, amino acids, dicarboxylates, glucosinolates, IAA, and ABA. The phylogenetic relationship of the members of the NRT1/PTR family in 31 fully sequenced plant genomes allowed the identification of unambiguous clades, defining eight subfamilies. The phylogenetic tree was used to determine a unified nomenclature of this family named NPF, for NRT1/PTR FAMILY. We propose that the members should be named accordingly: NPFX.Y, where X denotes the subfamily and Y the individual member within the species.


Assuntos
Proteínas de Transporte de Ânions/classificação , Proteínas de Membrana Transportadoras/classificação , Plantas/genética , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Nitrato , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
20.
Curr Biol ; 23(8): 697-702, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23583552

RESUMO

In higher plants, soluble sugars are mainly present as sucrose, glucose, and fructose. Sugar allocation is based on both source-to-sink transport and intracellular transport between the different organelles and depends on actual plant requirements. Under abiotic stress conditions, such as nitrogen limitation, carbohydrates accumulate in plant cells. Despite an increasing number of genetic studies, the genetic architecture determining carbohydrate composition is poorly known. Using a quantitative genetics approach, we determined that the carrier protein SWEET17 is a major factor controlling fructose content in Arabidopsis leaves. We observed that when SWEET17 expression is reduced, either by induced or natural variation, fructose accumulates in leaves, suggesting an enhanced storage capacity. Subcellular localization of SWEET17-GFP to the tonoplast and functional expression in Xenopus oocytes showed that SWEET17 is the first vacuolar fructose transporter to be characterized in plants. Physiological studies in planta provide evidence that SWEET17 acts to export fructose out of the vacuole. Overall, our results suggest that natural variation in leaf fructose levels is controlled by the vacuolar fructose transporter SWEET17. SWEET17 is highly conserved across the plant kingdom; thus, these findings offer future possibilities to modify carbohydrate partitioning in crops.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Frutose/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Animais , Metabolismo dos Carboidratos , Clonagem Molecular , Folhas de Planta/metabolismo , Reação em Cadeia da Polimerase , Locos de Características Quantitativas , Análise de Sequência de DNA , Estresse Fisiológico , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA