RESUMO
The peopling of the Americas and human interaction with the Pleistocene megafauna in South America remain hotly debated. The Santa Elina rock shelter in Central Brazil shows evidence of successive human settlements from around the last glacial maximum (LGM) to the Early Holocene. Two Pleistocene archaeological layers include rich lithic industry associated with remains of the extinct giant ground sloth Glossotherium phoenesis. The remains include thousands of osteoderms (i.e. dermal bones), three of which were human-modified. In this study, we perform a traceological analysis of these artefacts by optical microscopy, non-destructive scanning electron microscopy, UV/visible photoluminescence and synchrotron-based microtomography. We also describe the spatial association between the giant sloth bone remains and stone tools and provide a Bayesian age model that confirms the timing of this association in two time horizons of the Pleistocene in Santa Elina. The conclusion from our traceological study is that the three giant sloth osteoderms were intentionally modified into artefacts before fossilization of the bones. This provides additional evidence for the contemporaneity of humans and megafauna, and for the human manufacturing of personal artefacts on bone remains of ground sloths, around the LGM in Central Brazil.
Assuntos
Bichos-Preguiça , Xenarthra , Humanos , Animais , Brasil , Artefatos , Teorema de BayesRESUMO
Identifying evidence of human modification of extinct animal remains, such as Pleistocene megafauna, is challenging due to the similarity of anthropogenic and non-anthropogenic taphonomic features observed under optical microscopy. Here, we re-investigate a Late Pleistocene ground sloth tooth from northeast Brazil, previously suggested as human-modified based only on optical observation. To characterize the macro- and micro-morphological characteristics of the marks preserved in this tooth and evaluate potential human modification, we used stereomicroscope and scanning electron microscopy (SEM) supplemented by energy dispersive spectroscopy (EDS), UV photoluminescence (UV/PL), synchrotron-based X-ray fluorescence (SR-XRF), and synchrotron micro-computed tomography (SR-µCT). These methods allowed us to discriminate non-anthropogenic taphonomic features (root and sedimentary damage), anthropogenic marks, and histological features. The latter shows the infiltration of exogenous elements into the dentine from the sediments. Our evidence demonstrates the sequence of anthropogenic and non-anthropogenic taphonomic modification of this tooth and supports its initial intentional modification by humans. We highlight the benefits of emerging imaging and spectral imaging techniques to investigate and diagnose human modification in fossil and archaeological records and propose that human modification of tooth tissues should be further considered when studying possibly anthropogenically altered fossil remains.