Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32816729

RESUMO

Coagulase-negative staphylococci (CoNS) are a common etiology of serious and recurrent infections in immunocompromised patients. Although most isolates appear susceptible to vancomycin, a single strain might have a subpopulation of resistant bacteria. This phenomenon is termed heteroresistance and may adversely affect the response to treatment. A retrospective cohort study was performed of pediatric patients with leukemia treated at St. Jude Children's Research Hospital who developed CoNS central line-associated bloodstream infection (CLABSI). Available isolates were sequenced and tested for vancomycin heteroresistance by population analysis profiling. Risk factors for heteroresistance and the association of heteroresistance with treatment failure (death or relapse of infection) or poor clinical response to vancomycin therapy (treatment failure or persistent bacteremia after vancomycin initiation) were evaluated. For 65 participants with CoNS CLABSI, 62 initial isolates were evaluable, of which 24 (39%) were vancomycin heteroresistant. All heteroresistant isolates were of Staphylococcus epidermidis and comprised multiple sequence types. Participants with heteroresistant bacteria had more exposure to vancomycin prophylaxis (P = 0.026) during the 60 days prior to infection. Of the 40 participants evaluable for clinical outcomes, heteroresistance increased the risk of treatment failure (P = 0.012) and poor clinical response (P = 0.001). This effect persisted after controlling for identified confounders. These data indicate that vancomycin heteroresistance is common in CoNS isolates from CLABSIs in pediatric patients with leukemia and is associated with poor clinical outcomes. Validation of these findings in an independent cohort and evaluation of alternative antibiotic therapy in patients with heteroresistant infections have the potential to improve care for serious CoNS infections.


Assuntos
Bacteriemia , Sepse , Infecções Estafilocócicas , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Criança , Coagulase , Humanos , Testes de Sensibilidade Microbiana , Estudos Retrospectivos , Sepse/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Vancomicina/uso terapêutico
2.
Microbiology (Reading) ; 161(11): 2127-36, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26311256

RESUMO

NAD is a necessary cofactor present in all living cells. Some bacteria cannot de novo synthesize NAD and must use the salvage pathway to import niacin or nicotinamide riboside via substrate importers NiaX and PnuC, respectively. Although homologues of these two importers and their substrates have been identified in other organisms, limited data exist in Streptococcus pneumoniae, specifically, on its effect on overall virulence. Here, we sought to characterize the substrate specificity of NiaX and PnuC in Str. pneumoniae TIGR4 and the contribution of these proteins to virulence of the pathogen. Although binding affinity of each importer for nicotinamide mononucleotide may overlap, we found NiaX to specifically import nicotinamide and nicotinic acid, and PnuC to be primarily responsible for nicotinamide riboside import. Furthermore, a pnuC mutant is completely attenuated during both intranasal and intratracheal infections in mice. Taken together, these findings underscore the importance of substrate salvage in pneumococcal pathogenesis and indicate that PnuC could potentially be a viable small-molecule therapeutic target to alleviate disease progression in the host.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , NAD/metabolismo , Streptococcus pneumoniae/metabolismo , Streptococcus pneumoniae/patogenicidade , Fatores de Virulência/metabolismo , Animais , Modelos Animais de Doenças , Deleção de Genes , Proteínas de Membrana Transportadoras/genética , Camundongos , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/patologia , Streptococcus pneumoniae/genética , Especificidade por Substrato , Virulência , Fatores de Virulência/genética
3.
mBio ; 15(2): e0282823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38193698

RESUMO

Streptococcus pneumoniae is a major human pathogen of global health concern and the rapid emergence of antibiotic resistance poses a serious public health problem worldwide. Fluoroquinolone resistance in S. pneumoniae is an intriguing case because the prevalence of fluoroquinolone resistance does not correlate with increasing usage and has remained rare. Our data indicate that deleterious fitness costs in the mammalian host constrain the emergence of fluoroquinolone resistance both by de novo mutation and recombination. S. pneumoniae was able to circumvent such deleterious fitness costs via the development of antibiotic tolerance through metabolic adaptation that reduced the production of reactive oxygen species, resulting in a fitness benefit during infection of mice treated with fluoroquinolones. These data suggest that the emergence of fluoroquinolone resistance is tightly constrained in S. pneumoniae by fitness tradeoffs and that mutational pathways involving metabolic networks to enable tolerance phenotypes are an important contributor to the evasion of antibiotic-mediated killing.IMPORTANCEThe increasing prevalence of antibiotic resistant bacteria is a major global health concern. While many species have the potential to develop antibiotic resistance, understanding the barriers to resistance emergence in the clinic remains poorly understood. A prime example of this is fluroquinolone resistance in Streptococcus pneumoniae, whereby, despite continued utilization, resistance to this class of antibiotic remains rare. In this study, we found that the predominant pathways for developing resistance to this antibiotic class severely compromised the infectious capacity of the pneumococcus, providing a key impediment for the emergence of resistance. Using in vivo models of experimental evolution, we found that S. pneumoniae responds to repeated fluoroquinolone exposure by modulating key metabolic pathways involved in the generation of redox molecules, which leads to antibiotic treatment failure in the absence of appreciable shifts in resistance levels. These data underscore the complex pathways available to pathogens to evade antibiotic mediating killing via antibiotic tolerance.


Assuntos
Fluoroquinolonas , Infecções Pneumocócicas , Humanos , Animais , Camundongos , Fluoroquinolonas/farmacologia , Streptococcus pneumoniae/metabolismo , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/microbiologia , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Mamíferos
4.
J Inorg Biochem ; 240: 112122, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36639322

RESUMO

Maintenance of intracellular metal homeostasis during interaction with host niches is critical to the success of bacterial pathogens. To prevent infection, the mammalian innate immune response employs metal-withholding and metal-intoxication mechanisms to limit bacterial propagation. The first-row transition metal ion copper serves critical roles at the host-pathogen interface and has been associated with antimicrobial activity since antiquity. Despite lacking any known copper-utilizing proteins, streptococci have been reported to accumulate significant levels of copper. Here, we report that loss of CopA, a copper-specific exporter, confers increased sensitivity to copper in Streptococcus pyogenes strain HSC5, with prolonged exposure to physiological levels of copper resulting in reduced viability during stationary phase cultivation. This defect in stationary phase survival was rescued by supplementation with exogeneous amino acids, indicating the pathogen had altered nutritional requirements during exposure to copper stress. Furthermore, S. pyogenes HSC5 ΔcopA was substantially attenuated during murine soft-tissue infection, demonstrating the importance of copper efflux at the host-pathogen interface. Collectively, these data indicate that copper can severely reduce the viability of stationary phase S. pyogenes and that active efflux mechanisms are required to survive copper stress in vitro and during infection.


Assuntos
Cobre , Streptococcus pyogenes , Camundongos , Animais , Cobre/metabolismo , Virulência , Streptococcus pyogenes/metabolismo , Proteínas de Bactérias/química , Homeostase , Regulação Bacteriana da Expressão Gênica , Mamíferos/metabolismo
5.
Cell Rep ; 41(11): 111835, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516783

RESUMO

As opposed to de novo mutation, ß-lactam resistance in S. pneumoniae is often conferred via homologous recombination during horizontal gene transfer. We hypothesize that ß-lactam resistance in pathogenic streptococci is restricted to naturally competent species via intra-/interspecies recombination due to in vivo fitness trade-offs of de novo penicillin-binding protein (PBP) mutations. We show that de novo mutant populations have abrogated invasive disease capacity and are difficult to evolve in vivo. Conversely, serially transformed recombinant strains efficiently integrate resistant oral streptococcal DNA, gain penicillin resistance and tolerance, and retain virulence in mice. Large-scale changes in pbp2X, pbp2B, and non-PBP-related genes occur in recombinant isolates. Our results indicate that horizontal transfer of ß-lactam resistance engenders initially favorable or minimal cost changes in vivo compared with de novo mutation(s), underscoring the importance of recombination in the emergence of ß-lactam resistance and suggesting why some pathogenic streptococci lacking innate competence remain universally susceptible.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Camundongos , Animais , Streptococcus pneumoniae/genética , Transferência Genética Horizontal , Virulência/genética , Testes de Sensibilidade Microbiana , Resistência beta-Lactâmica/genética , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Mutação/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo
6.
J Med Microbiol ; 70(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34779760

RESUMO

Streptococcus pneumoniae is a highly adept human pathogen. A frequent asymptomatic member of the respiratory microbiota, the pneumococcus has a remarkable capacity to cause mucosal (pneumonia and otitis media) and invasive diseases (bacteremia, meningitis). In addition, the organism utilizes a vast battery of virulence factors for tissue and immune evasion. Though recognized as a significant cause of pneumonia for over a century, efforts to develop more effective vaccines remain ongoing. The pathogen's inherent capacity to exchange genetic material is critical to the pneumococcus' success. This feature historically facilitated essential discoveries in genetics and is vital for disseminating antibiotic resistance and vaccine evasion.


Assuntos
Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae , Bacteriemia , Humanos , Otite Média , Vacinas Pneumocócicas , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/imunologia , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA