Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Int J Mol Sci ; 19(5)2018 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-29757216

RESUMO

NOD (non-obese diabetic) mice spontaneously develop type 1 diabetes following T cell-dependent destruction of pancreatic β cells. Several alterations are observed in the NOD thymus, including the presence of giant perivascular spaces (PVS) filled with single-positive (SP) CD4⁺ and CD8⁺ T cells that accumulate in the organ. These cells have a decreased expression of membrane CD49e (the α5 integrin chain of the fibronectin receptor VLA-5 (very late antigen-5). Herein, we observed lower sphingosine-1-phosphate receptor 1 (S1P1) expression in NOD mouse thymocytes when compared with controls, mainly in the mature SP CD4⁺CD62Lhi and CD8⁺CD62Lhi subpopulations bearing the CD49e− phenotype. In contrast, differences in S1P1 expression were not observed in mature CD49e⁺ thymocytes. Functionally, NOD CD49e− thymocytes had reduced S1P-driven migratory response, whereas CD49e⁺ cells were more responsive to S1P. We further noticed a decreased expression of the sphingosine-1-phosphate lyase (SGPL1) in NOD SP thymocytes, which can lead to a higher sphingosine-1-phosphate (S1P) expression around PVS and S1P1 internalization. In summary, our results indicate that the modulation of S1P1 expression and S1P/S1P1 interactions in NOD mouse thymocytes are part of the T-cell migratory disorder observed during the pathogenesis of type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Receptores de Lisoesfingolipídeo/genética , Timócitos/metabolismo , Animais , Movimento Celular , Diabetes Mellitus Tipo 1/imunologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Integrina alfa5/genética , Integrina alfa5/metabolismo , Integrina alfa5beta1/metabolismo , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
2.
Exp Physiol ; 97(11): 1146-50, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22327328

RESUMO

Cell migration is a key event for proper intrathymic T-cell differentiation, and several ligand-receptor interactions contribute to the well-co ordinated movement of developing thymocytes within the thymic lobules. Herein we summarize recent data that place semaphorin 3A (Sema3A) and its receptor neuropilin 1 (NRP1) as further players in the physiological process of cell migration in the human thymus. These molecules, as well as class A plexins (necessary for the intracellular signalling transduction triggered by Sema3A-NRP1 ligation), are constitutively expressed by both developing thymocytes and components of the thymic microenvironment, including epithelial and dendritic cells. Functionally, Sema3A decreases the adhesion of human thymocytes on thymic epithelial cell monolayers and exerts per se a dose-dependent chemorepulsive effect on human thymocytes. Moreover, Sema3A inhibits chemoattractant migratory responses induced by other ligands, including fibronectin, laminin and CXCL12 (chemokine CXC motif ligand 12). These data should be placed in the context of the concept that migration of developing T cells is a multivectorial system, in which the resulting migration vector derives from a balance of several simultaneous and/or sequential ligand-receptor pair interactions. Accordingly, semaphorins and neuropilins can be considered as further players in the system.


Assuntos
Movimento Celular/fisiologia , Neuropilinas/fisiologia , Sistemas Neurossecretores/fisiologia , Semaforinas/fisiologia , Linfócitos T/fisiologia , Timócitos/fisiologia , Humanos , Sistemas Neurossecretores/metabolismo , Timócitos/metabolismo , Timo/metabolismo , Timo/fisiologia
3.
Neuroimmunomodulation ; 18(5): 309-13, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21952682

RESUMO

Cell migration is crucial for intrathymic T cell differentiation and export of mature T lymphocytes to the peripheral lymphoid organs. The intrinsic regulation of T cell migration, mediated by adhesion molecules and chemokines, can be influenced by a number of endogenous factors, such as hormones, as for instance growth hormone (GH). Laminin deposition was enhanced in GH-treated mice and in GH-transgenic animals, compared with corresponding controls, and thymocyte adhesion to laminin was increased by in vivo GH treatment. An enhancing effect was also observed ex vivo in relation to the number of migrating cells in laminin-coated transwell chambers. Additionally, we found that the chemokine CXCL12, in conjunction with laminin, further enhanced the migration of thymocytes previously exposed to high concentrations of GH in vivo. Moreover, an increase in CXCL12 production has been detected in the thymus of GH-transgenic mice as well as in primary thymic epithelial cell cultures derived from these animals, as compared to age-matched wild-type counterparts. In keeping with these data, in vivo experiments showed that GH favors the trafficking of naive CD4+CD8- recent thymic emigrants to the peripheral lymph nodes. In addition, we found that migration of lymphocytes from mesenteric lymph nodes of GH-transgenic mice, triggered by the chemokine CXCL12, in conjunction with laminin or fibronectin, was enhanced, when compared to lymphocytes from control mice. Since GH-based therapy has been used in human and experimental infectious diseases, this hormone can be envisioned as an additional therapeutic tool in situations in which increasing lymphocyte numbers and migration are required for correcting a given pathological state.


Assuntos
Movimento Celular/efeitos dos fármacos , Hormônio do Crescimento/farmacologia , Hormônio do Crescimento/fisiologia , Linfócitos/efeitos dos fármacos , Timócitos/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Quimiocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hormônio do Crescimento/genética , Humanos , Ativação Linfocitária/efeitos dos fármacos , Linfócitos/metabolismo , Camundongos , Camundongos Transgênicos , Timócitos/efeitos dos fármacos
4.
Neuroimmunomodulation ; 18(5): 350-6, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21952687

RESUMO

Thymulin is a thymic hormone exclusively produced by the thymic epithelial cells. After its discovery and initial characterization in the 1970s, it was demonstrated that thymulin production and secretion is strongly influenced by the neuroendocrine system. Conversely, a growing core of information, to be reviewed here, points to thymulin as a hypophysiotropic peptide. Additionally, thymulin was shown to possess anti-inflammatory and analgesic properties in the brain. In recent years, a synthetic DNA sequence coding for a biologically active analog of thymulin, metFTS, was constructed and cloned in different adenoviral vectors. These include bidirectional regulatable Tet-Off vector systems that simultaneously express metFTS and green fluorescent protein and that can be downregulated reversibly by the addition of the antibiotic doxycycline. A number of recent studies suggest that thymulin gene therapy may be a suitable therapeutic strategy to prevent some of the endocrine and reproductive alterations that typically appear in congenitally athymic (nude) mice, taken as a suitable model of neuroendocrine and reproductive aging. The present article briefly reviews the literature on the physiology of the thymulin-pituitary axis as well as on the new molecular tools available to exploit the therapeutic potential of thymulin.


Assuntos
Envelhecimento/genética , Terapia Genética , Hipófise/fisiologia , Fator Tímico Circulante/genética , Animais , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Humanos , Camundongos , Camundongos Nus , Modelos Animais , Fator Tímico Circulante/metabolismo
5.
Biol Trace Elem Res ; 199(2): 585-587, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32363520

RESUMO

Activity of the immunoregulatory peptide thymulin reflects differences in zinc status. This study compared thymulin activity with four other zinc status measures in rats fed zinc at either 5 or 25 ppm. Rats fed the lower zinc showed the following results compared with rats with adequate zinc intake: serum thymulin activity 61% lower, serum zinc 31% lower, serum extracellular superoxide dismutase 18% lower, serum 5'-nucleotidase activity 26% lower, and liver metallothionein 28% lower. Thus, thymulin activities showed more sensitivity to restricted zinc intake than did four other parameters.


Assuntos
Fator Tímico Circulante , Zinco , Animais , Fígado , Metalotioneína , Ratos
6.
BMC Genomics ; 11 Suppl 5: S2, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21210968

RESUMO

BACKGROUND: The thymus is a central lymphoid organ, in which bone marrow-derived T cell precursors undergo a complex process of maturation. Developing thymocytes interact with thymic microenvironment in a defined spatial order. A component of thymic microenvironment, the thymic epithelial cells, is crucial for the maturation of T-lymphocytes through cell-cell contact, cell matrix interactions and secretory of cytokines/chemokines. There is evidence that extracellular matrix molecules play a fundamental role in guiding differentiating thymocytes in both cortical and medullary regions of the thymic lobules. The interaction between the integrin α5ß1 (CD49e/CD29; VLA-5) and fibronectin is relevant for thymocyte adhesion and migration within the thymic tissue. Our previous results have shown that adhesion of thymocytes to cultured TEC line is enhanced in the presence of fibronectin, and can be blocked with anti-VLA-5 antibody. RESULTS: Herein, we studied the role of CD49e expressed by the human thymic epithelium. For this purpose we knocked down the CD49e by means of RNA interference. This procedure resulted in the modulation of more than 100 genes, some of them coding for other proteins also involved in adhesion of thymocytes; others related to signaling pathways triggered after integrin activation, or even involved in the control of F-actin stress fiber formation. Functionally, we demonstrated that disruption of VLA-5 in human TEC by CD49e-siRNA-induced gene knockdown decreased the ability of TEC to promote thymocyte adhesion. Such a decrease comprised all CD4/CD8-defined thymocyte subsets. CONCLUSION: Conceptually, our findings unravel the complexity of gene regulation, as regards key genes involved in the heterocellular cell adhesion between developing thymocytes and the major component of the thymic microenvironment, an interaction that is a mandatory event for proper intrathymic T cell differentiation.


Assuntos
Adesão Celular/fisiologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/genética , Integrina alfa5/genética , Linfócitos T/fisiologia , Timo/citologia , Adesão Celular/genética , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Fibronectinas/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Integrina alfa5/metabolismo , Interferência de RNA
7.
Brain Behav Immun ; 24(3): 451-61, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19948213

RESUMO

Previous evidence indicated that growth hormone (GH) modulates cell migration in the thymus, and that extracellular matrix and chemokines are involved. Herein, we studied migration of peripheral lymphocytes derived from spleen and lymph nodes of GH-transgenic (GH-Tg) mice. We initially found that the relative cell numbers (normalized per gram of body weight) in lymph nodes and spleens from GH-Tg were higher at all ages tested (2-3, 7 and 12 months), as compared to wild type age-matched controls. Functionally, we found that lymphocyte migration triggered by laminin or fibronectin was enhanced in cells from GH-Tg versus control mice, independent of the organ from which the cells were derived (as ascertained in young adult animals). However, such an enhancement in migration was statistically significant only for CD4+ and CD8+ T cells from mesenteric lymph nodes. Migration of lymphocytes from mesenteric lymph nodes of GH-Tg mice, triggered by the chemokine CXCL12, in conjunction with laminin or fibronectin, was enhanced compared to lymphocytes from control mice. Rather surprisingly, the membrane levels of the corresponding extracellular matrix or chemokine receptors in peripheral lymphoid organs of GH-Tg mice did not necessarily correlate with the changes seen in migratory responses. In conclusion, our data show for the first time that GH alters lymphocyte migration in the periphery of the immune system. Considering that GH is used as an adjuvant therapeutic agent in immunodeficiencies, including AIDS, the concepts defined herein provide relevant background knowledge for future GH-related immune interventions.


Assuntos
Quimiocinas/metabolismo , Matriz Extracelular/fisiologia , Hormônio do Crescimento/genética , Hormônio do Crescimento/fisiologia , Linfócitos/fisiologia , Animais , Subpopulações de Linfócitos B/fisiologia , Movimento Celular , Quimiotaxia de Leucócito , Feminino , Fibronectinas/metabolismo , Citometria por Imagem , Imuno-Histoquímica , Linfonodos/patologia , Masculino , Camundongos , Camundongos Transgênicos , Baço/patologia , Subpopulações de Linfócitos T/fisiologia
8.
Mol Immunol ; 87: 180-187, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28501652

RESUMO

Thymulin is a thymic peptide possessing anti-inflammatory effects. In order to manipulate thymulin expression in gene therapy studies, we built a bidirectional regulatable two-vector Tet-Off system and the corresponding control system. The experimental two-vector system, ETV, consists of a recombinant adenovector (RAd) harboring an expression cassette centered on a Tet-Off bidirectional promoter flanked by a synthetic gene for thymulin and the gene for humanized Green Fluorescent Protein (hGFP). The second adenovector of this system, RAd-tTA, constitutively expresses the regulatory protein tTA. When cells are co-transduced by the two adenovector components, tTA activates the bidirectional promoter and both transgenes are expressed. In the presence of the antibiotic doxycycline (DOX) transgene expression is deactivated. The control two-vector system, termed CTV, is similar to ETV but only expresses hGFP. In CHO-K1, BHK, and C2C12 cells, ETV and CTV induced a dose-dependent hGFP expression. In CHO-K1 cells, transgene expression was almost completely inhibited by DOX (1mg/ml). After intracerebroventricular injection of ETV in rats, thymulin levels increased significantly in the cerebrospinal fluid and there was high hGFP expression in the ependymal cell layer. When injected intramuscularly the ETV system induced a progressive increase in serum thymulin levels, which were inhibited when DOX was added to the drinking water. We conclude that our regulatable two-adenovector system is an effective molecular tool for implementing short and long-term anti-inflammatory thymulin gene therapy in animal models of acute or chronic inflammation.


Assuntos
Adenoviridae/genética , Vetores Genéticos/genética , Inflamação/genética , Inflamação/terapia , Fator Tímico Circulante/genética , Adenoviridae/efeitos dos fármacos , Animais , Células CHO , Linhagem Celular , Cricetulus , Doxiciclina/farmacologia , Feminino , Terapia Genética/métodos , Proteínas de Fluorescência Verde/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Ratos , Ratos Sprague-Dawley , Transgenes/efeitos dos fármacos , Transgenes/genética
9.
Ann N Y Acad Sci ; 1088: 153-63, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17192563

RESUMO

The thymic peptide thymulin is known for its immunomodulatory role. However, several recent reports have indicated that thymulin is capable of interacting directly and/or indirectly with the nervous system. One of the first lines of evidence of this interaction was obtained in a series of experiments showing the hyperalgesic actions of this peptide. We demonstrated that, at low doses (ng), local (intraplantar) or systemic (intraperitoneal) injections of thymulin resulted in hyperalgesia with an increase in proinflammatory mediators, and that this peptide could act directly on the afferent nerve terminals through prostaglandin-E2 (PGE2)-dependent mechanisms, thus forming a neuroimmune loop involving capsaicin-sensitive primary afferent fibers. In further experiments, systemic injections of relatively high doses (1-25 microg) of thymulin or of an analogue peptide (PAT) deprived of hyperalgesic effect, have been shown to reduce the inflammatory pain and the upregulated levels of cytokines induced by endotoxin (ET) injection. In addition, PAT treatment appeared to alleviate the sickness behavior (motor behavior and fever) induced by systemic inflammation. These effects could be attributed, at least partly, to the downregulation of proinflammatory mediators. Furthermore, when compared with the effects of other anti-inflammatory drugs, PAT exerted equal or even stronger analgesic effects, and at much lower concentrations. Subsequent experiments were designed to examine the effects of intracerebroventricular (i.c.v.) injections of thymulin on cerebral inflammation induced by i.c.v. injection of ET. Pretreatment with thymulin reduced, in a dose-dependent manner, the ET-induced hyperalgesia, and exerted differential effects on the upregulated levels of cytokines in different areas of the brain, suggesting a neuroprotective role for thymulin in the central nervous system (CNS). Preliminary results demonstrate that thymulin inhibits in the hippocampus the ET-induced nuclear activation of NF-kappaB, the transcription factor required for the expression of proinflammatory cytokines genes. Although the mechanism of action of these molecules is not totally elucidated, our results indicate a possible therapeutic use of thymulin or PAT as analgesic and anti-inflammatory drugs.


Assuntos
Analgésicos/farmacologia , Hiperalgesia/tratamento farmacológico , Fatores Imunológicos/farmacologia , Dor/tratamento farmacológico , Fator Tímico Circulante/análogos & derivados , Analgésicos/imunologia , Animais , Humanos , Hiperalgesia/imunologia , Fatores Imunológicos/imunologia , Dor/imunologia , Fator Tímico Circulante/imunologia
10.
Brain Res Bull ; 69(6): 647-51, 2006 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-16716832

RESUMO

Thymulin is a thymic peptide with antiinflammatory activity in the brain. We constructed a recombinant adenoviral vector, RAd-FTS, expressing a synthetic DNA sequence encoding met-FTS, a biologically active analog of thymulin and used it for peripheral and central gene transfer in rats. Thymulin concentration in serum and brain tissue was determined by bioassay. Reporter gene expression in the substantia nigra (SN) was quantitated by enzymohistochemistry or fluorescence microscopy using an appropriate image analysis software. A single intramuscular injection (10(8) plaque forming units (pfu)/animal) of RAd-FTS in thymectomized rats (nondetectable serum thymulin) induced supraphysiologic serum thymulin levels for at least 110 days (123+/-22 fg/ml versus 598+/-144 fg/ml in intact and vector-injected rats, respectively). Stereotaxic intranigral injection of RAd-FTS induced steady expression levels of met-FTS for at least 90 days, whereas expression of adenovirally transferred reporter genes coding for green fluorescent protein fused to HSV thymidine kinase (GFP-TK)(fus) or E.coli beta-galactosidase (beta-gal), declined drastically within a month (% transgene expression in the SN on post-injection day 30 relative to day 2 was: 18, <1 and 125%, for beta-gal, (GFP-TK)(fus) and met-FTS, respectively). We conclude that RAd-FTS constitutes a suitable biotechnological tool for the assessment of peripheral and central thymulin gene therapy in animal models of nigral dopaminergic neurodegeneration induced by pro-inflammatory agents.


Assuntos
Técnicas de Transferência de Genes , Substância Negra/metabolismo , Fator Tímico Circulante/genética , Adenoviridae/genética , Animais , Diagnóstico por Imagem/métodos , Feminino , Regulação da Expressão Gênica/fisiologia , Genes Reporter/fisiologia , Genes Sintéticos/fisiologia , Vetores Genéticos/fisiologia , Imuno-Histoquímica/métodos , Masculino , Ratos , Ratos Sprague-Dawley , Timectomia/métodos , Fator Tímico Circulante/metabolismo , Fatores de Tempo
12.
Lipids ; 41(8): 753-7, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17120928

RESUMO

During adult life athymic (nude) male mice display not only a severe T-cell-related immunodeficiency but also endocrine imbalances and a moderate hyperglycemia. We studied the impact of congenital athymia on hepatic lipid composition and also assessed the ability of neonatal thymulin gene therapy to prevent the effects of athymia. We constructed a recombinant adenoviral vector, RAd-metFTS, expressing a synthetic DNA sequence encoding met-FTS, an analog of the thymic peptide facteur thymique sérique (FTS), whose Zn-bound biologically active form is known as thymulin. On postnatal day 1-2 homozygous (nu/nu) nude and heterozygous (nu/+) mice were injected with 10(8) pfu of RAd-metFTS or RAd-betagal (control vector) intramuscularly. The animals were processed at 52 d of age. Serum thymulin, glycemia, hepatic phospholipid FA composition and free and esterified cholesterol were determined. Adult homozygous male nudes were significantly (P < 0.01) hyperglycemic when compared with their heterozygous counterparts (2.04 vs. 1.40 g/L, respectively). The relative percentage of 16:0, 18:1 n-9, and 18:1n-7 FA was lower, whereas that of 18:0, 20:4n-6, and 22:6n-3 FA was higher, in hepatic phospholipid (PL) of nu/nu animals as compared with their nu/+ counterparts. Some of these alterations, such as that in the relative content of 22:6n-3 in liver PL and the unsaturation index, were completely or partially prevented by neonatal thymulin gene therapy. We conclude that the thymus influences lipid metabolism and that thymulin is involved in this modulatory activity.


Assuntos
Terapia Genética , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Fator Tímico Circulante/genética , Animais , Animais Recém-Nascidos , Glicemia/metabolismo , Camundongos , Camundongos Nus , Fator Tímico Circulante/fisiologia
13.
Nat Rev Endocrinol ; 12(2): 77-89, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26437623

RESUMO

The physiology of the thymus, the primary lymphoid organ in which T cells are generated, is controlled by hormones. Data from animal models indicate that several peptide and nonpeptide hormones act pleiotropically within the thymus to modulate the proliferation, differentiation, migration and death by apoptosis of developing thymocytes. For example, growth hormone and prolactin can enhance thymocyte proliferation and migration, whereas glucocorticoids lead to the apoptosis of these developing cells. The thymus undergoes progressive age-dependent atrophy with a loss of cells being generated and exported, therefore, hormone-based therapies are being developed as an alternative strategy to rejuvenate the organ, as well as to augment thymocyte proliferation and the export of mature T cells to peripheral lymphoid organs. Some hormones (such as growth hormone and progonadoliberin-1) are also being used as therapeutic agents to treat immunodeficiency disorders associated with thymic atrophy, such as HIV infection. In this Review, we discuss the accumulating data that shows the thymus gland is under complex and multifaceted hormonal control that affects the process of T-cell development in health and disease.


Assuntos
Diferenciação Celular/imunologia , Hormônio do Crescimento Humano/imunologia , Prolactina/imunologia , Linfócitos T/imunologia , Timócitos/imunologia , Timo/imunologia , Animais , Movimento Celular/imunologia , Proliferação de Células , Hormônio Liberador de Gonadotropina/uso terapêutico , Hormônio do Crescimento/imunologia , Infecções por HIV/tratamento farmacológico , Hormônio do Crescimento Humano/uso terapêutico , Humanos , Síndromes de Imunodeficiência/tratamento farmacológico , Tecido Linfoide/imunologia , Precursores de Proteínas/uso terapêutico
14.
Endocrinology ; 146(7): 3005-17, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15802502

RESUMO

Previous evidence indicates that GH modulates thymic cell migration. In this study we approached this issue in vivo, studying thymocyte migration in GH transgenic animals and in normal mice treated intrathymically with GH. Extracellular matrix and chemokines are involved in thymocyte migration. In this respect, thymocyte adhesion to laminin was higher in GH-treated animals than controls, and the numbers of migrating cells in laminin-coated Transwells was higher in GH-transgenic and GH-injected mice. Additionally, CXC chemokine ligand 12 (CXCL12)-driven migration was higher in GH-Tg and GH-treated animals compared with controls. Interestingly, although CXCR4 expression on thymocytes did not change in GH-Tg mice, the CXCL12 intrathymic contents were higher. We found that CXCL12, in conjunction with laminin, would additionally enhance the migration of thymocytes previously exposed to high concentrations of GH in vivo. Lastly, there was an augmentation of recent thymic emigrants in lymph nodes from GH-Tg and GH-injected animals. In conclusion, enhanced thymocyte migration in GH transgenic mice as well as GH-injected mice results at least partially from a combined action of laminin and CXCL12. Considering that GH is presently being used as an adjuvant therapeutic agent in immunodeficiencies, including AIDS, the concepts defined herein provide important background knowledge for future GH-based immune interventions.


Assuntos
Quimiocinas CXC/farmacologia , Hormônio do Crescimento/farmacologia , Laminina/farmacologia , Timo/citologia , Timo/fisiologia , Animais , Animais Geneticamente Modificados , Bovinos , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Quimiocina CXCL12 , Sinergismo Farmacológico , Matriz Extracelular/metabolismo , Feminino , Hormônio do Crescimento/administração & dosagem , Hormônio do Crescimento/genética , Injeções , Ligantes , Linfonodos/citologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Timo/efeitos dos fármacos
15.
Br J Pharmacol ; 136(6): 947-55, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12110619

RESUMO

1. The present study examines the effect of PAT (peptide analogue of thymulin) in two rat models of inflammatory hyperalgesia induced by either i.pl. (1.25 microg in 50 microl saline) or i.p. (50 microg in 100 microl) injections of endotoxin ET. 2. Pretreatment with PAT (1, 5 or 25 microg in 100 microl saline, i.p.) decreased, in a dose dependent manner, both mechanical hyperalgesia, determined by the paw pressure (PP) test and thermal hyperalgesia determined by the hot plate (HP), the paw immersion (PI) and the tail flick (TF) tests. 3. Compared to the tripeptides K(D)PT and K(D)PV, known to antagonize interleukin (IL)-1beta or IL-1beta and PGE(2) mechanisms, PAT, at lower dosages, exerted stronger anti-hyperalgesic effects. 4. When compared with the effect of a steroidal (dexamethasone) and a non-steroidal (indomethacin) anti-inflammatory drugs (NSAID), PAT demonstrated equal analgesic actions. 5. Pretreatment with PAT, reduced significantly the increased concentration of IL-1beta, IL-6, TNF-alpha and NGF due to i.pl. injection of ET. 6. Injection of i.p. ET produced sickness behaviour characterized by hyperalgesia and fever. Pretreatment with PAT prevented the hyperalgesia and maintained the body temperature within the normal range and was accompanied by a down-regulation of the levels of pro-inflammatory cytokines and PGE(2) in the liver. 7. PAT, in all doses used, did not result in any evident changes in the physiological parameters or in the normal behaviour of the rats. 8. The anti-hyperalgesic and anti-inflammatory effects of PAT can be attributed, at least partially, to the down-regulation of pro-inflammatory mediators.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Hiperalgesia/tratamento farmacológico , Oligopeptídeos/farmacologia , Fator Tímico Circulante/química , Analgésicos/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios não Esteroides/uso terapêutico , Citocinas/biossíntese , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Dinoprostona/metabolismo , Endotoxinas , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Indometacina/farmacologia , Indometacina/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Masculino , Fator de Crescimento Neural/metabolismo , Oligopeptídeos/uso terapêutico , Limiar da Dor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Regulação para Cima
16.
Ann N Y Acad Sci ; 992: 179-85, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12794057

RESUMO

Increasing evidence has placed the thymus as a target for neuroendocrine control. Herein we review the pleiotropic effects of growth hormone (GH) on this primary lymphoid organ, with emphasis on data derived from in vivo experiments. A series of results strongly indicate that GH enhances thymocyte proliferation in both rodents and humans. Moreover, in vivo treatment with GH enhances interleukin (IL)-6 production by mouse thymocytes, and ex vivo experiments show that production of other cytokines, such as IL-1 and GM-CSF, is also augmented. In a second vein, GH exerts a modulatory role on thymic hormone production, particularly the secretion of thymulin. In GH-treated animals as well as GH-transgenic mice, thymulin secretion is enhanced. In acromegalic patients we found higher levels of thymulin secretion, whereas the opposite was seen in dwarf mice and GH receptor knockout animals. Developing T cell migration is also under GH influence. Recombinant GH was found to increase human T cell engraftment in the thymus of SCID mice. Moreover, ex vivo thymocyte traffic into and out of thymic nurse cell complexes is enhanced after GH treatment. Lastly, we show that thymocyte export in vivo is modulated by GH, which favors the homing of CD4(+) recent thymic emigrants towards lymph nodes. In conclusion, the possibility that GH improves in vivo thymic functions, including thymocyte proliferation and migration, points to this molecule as a potential therapeutic adjuvant in T cell associated immunodeficiencies.


Assuntos
Hormônio do Crescimento/fisiologia , Hormônio do Crescimento Humano/fisiologia , Linfócitos T/imunologia , Animais , Quimiotaxia de Leucócito , Citocinas/biossíntese , Humanos , Ativação Linfocitária
17.
Peptides ; 25(1): 139-42, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15003367

RESUMO

Thymulin is a thymic hormone exclusively produced by the thymic epithelial cells. It consists of a nonapeptide component coupled to the ion zinc, which confers biological activity to this molecule. After its discovery in the early 1970, thymulin was characterized as a thymic hormone involved in several aspects of intra- and extrathymic T-cell differentiation. Subsequently, it was demonstrated that thymulin production and secretion is strongly influenced by the neuroendocrine system. Conversely, an emerging core of information points to thymulin as a hypophysotropic peptide. Here we review the evidence supporting the hypothesis that thymulin is an important player in the hypophyso-thymic axis.


Assuntos
Sistemas Neurossecretores/química , Fator Tímico Circulante/metabolismo , Animais , Terapia Genética
18.
Curr Pharm Des ; 20(29): 4690-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24588820

RESUMO

Thymulin is a thymic hormone exclusively produced by the epithelial cells of the thymus. After its discovery and initial characterization in the '70s, it was demonstrated that the production and secretion of thymulin are strongly influenced by the neuro-endocrine system. Conversely, a growing body of evidence, to be reviewed here, suggests that thymulin is a hypophysiotropic peptide. Additionally, a substantial body of information pointing to thymulin and a synthetic analog as anti-inflammatory and analgesic peptides in the central nervous system brain and other organs will be also reviewed. In recent years, a synthetic DNA sequence encoding a biologically active analog of thymulin, metFTS, was constructed and cloned in a number of adenovectors. These include bidirectional regulatable Tet-Off vector systems that simultaneously express metFTS and green fluorescent protein and that can be down-regulated reversibly by the addition of the antibiotic doxycycline. A number of recent studies indicate that gene therapy for thymulin may be an effective therapeutic strategy to prevent some of the hormonal and reproductive abnormalities that typically appear in congenitally athymic (nude) mice, used as a suitable model of neuroendocrine and reproductive aging. Summing up, this article briefly reviews the publications on the physiology of the thymulin-neuroendocrine axis and the anti-inflammatory properties of the molecule and its analog. The availability of novel biotechnological tools should boost basic studies on the molecular biology of thymulin and should also allow an assessment of the potential of gene therapy to restore circulating thymulin levels in thymodeficient animal models and eventually, in humans.


Assuntos
Fator Tímico Circulante/fisiologia , Fator Tímico Circulante/uso terapêutico , Humanos , Sistema Imunitário/fisiologia , Sistemas Neurossecretores/fisiologia , Timo/fisiologia
19.
PLoS One ; 9(7): e103405, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25068647

RESUMO

Neuropilins and semaphorins are known as modulators of axon guidance, angiogenesis, and organogenesis in the developing nervous system, but have been recently evidenced as also playing a role in the immune system. Here we describe the expression and role of semaphorin 3F (SEMA3F) and its receptor neuropilin-2 (NRP2) in human T cell precursors. NRP2 and SEMA3F are expressed in the human thymus, in both lymphoid and non-lymphoid compartments. SEMA3F have a repulsive effect on thymocyte migration and inhibited CXCL12- and sphingosine-1-phosphate (S1P)-induced thymocyte migration by inhibiting cytoskeleton reorganization prior to stimuli. Moreover, NRP2 and SEMA3F are expressed in human T-cell acute lymphoblastic leukemia/lymphoma primary cells. In these tumor cells, SEMA3F also blocks their migration induced by CXCL12 and S1P. Our data show that SEMA3F and NRP2 are further regulators of human thymocyte migration in physiological and pathological conditions.


Assuntos
Movimento Celular/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Neuropilina-2/genética , Células Precursoras de Linfócitos T/metabolismo , Anticorpos Bloqueadores/imunologia , Anticorpos Bloqueadores/farmacologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Quimiocina CXCL12/farmacologia , Criança , Pré-Escolar , Expressão Gênica , Humanos , Lactente , Recém-Nascido , Lisofosfolipídeos/farmacologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/farmacologia , Microscopia Confocal , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/farmacologia , Neuropilina-2/imunologia , Neuropilina-2/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Timócitos/metabolismo , Timo/citologia , Timo/metabolismo
20.
PLoS One ; 8(9): e70292, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086246

RESUMO

Basophils co-express FcεRIα and CD49b, the α-2 chain of integrin-type receptor VLA-2 (α2ß1), which recognizes type-1 collagen as a major natural ligand. The physiological relevance of this integrin for interactions with extracellular bone marrow matrix remains unknown. Herein, we examined the expression of several receptors of this family by bone marrow-derived basophils sorted either ex-vivo or after culture with IL-3. Having established that both populations display CD49d, CD49e and CD49f (α-4, α-5 and α-6 integrins subunits, respectively), we addressed receptor functions by measuring migration, adhesion, proliferation and survival after interacting with matched natural ligands. Type I collagen, laminin and fibronectin promoted basophil migration/adhesion, the former being the most effective. None of these ligands affected basophil viability and expansion. Interactions between basophils and extracellular matrix are likely to play a role in situ, as supported by confocal 3D cell imaging of femoral bone marrow sections, which revealed basophils exclusively in type-1 collagen-enriched niches that contained likewise laminin and fibronectin. This is the first evidence for a structure/function relationship between basophils and extracellular matrix proteins inside the mouse bone marrow.


Assuntos
Basófilos/citologia , Células da Medula Óssea/citologia , Movimento Celular , Matriz Extracelular , Animais , Basófilos/metabolismo , Células da Medula Óssea/metabolismo , Adesão Celular , Células Cultivadas , Feminino , Imunofluorescência , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA