RESUMO
Wheat quality depends on protein composition and grain protein content. High molecular weight glutenin subunits (HMW-GS) play an important role in determining the viscoelastic properties of gluten. In an attempt to improve the bread-making quality of hexaploid wheat by elaborating novel HMW-GS combinations, a fragment of wheat chromosome 1D containing the Glu-D1 locus encoding the Dx2+Dy12 subunits was translocated to the long arm of chromosome 1A using the ph1b mutation. The partially isohomoeoallelic line selected was characterized using cytogenetical and molecular approaches to assess the amount of chromatin introgressed in the translocated 1A chromosome. Triple-target genomic in situ hybridization indicated that the translocated 1A chromosome had a terminal 1D segment representing 25% of the length of the recombinant long arm. The translocation was also identified on the long arm using molecular markers, and its length was estimated with a minimum of 91 cM. Proteome analysis was performed on total endosperm proteins. Out of the 152 major spots detected, 9 spots were up-regulated and 4 spots were down-regulated. Most of these proteins were identified as alpha-, beta-, gamma-gliadins assigned to the chromosomes of homoeologous groups 1 and 6. Quantitative variations in the HMW-GS were only observed in subunit Dy12 in response to duplication of the Glu-D1 locus.
Assuntos
Cromossomos de Plantas/química , Genes de Plantas , Glutens/química , Subunidades Proteicas/genética , Triticum/genética , Alelos , Produtos Agrícolas/genética , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Hibridização Genética , Repetições Minissatélites , Peso Molecular , Mapeamento Físico do Cromossomo , Poliploidia , Proteoma/análise , Recombinação Genética , Translocação GenéticaRESUMO
Our objective was to partially sequence genes controlling nitrogen metabolism in wheat species in order to find sequence polymorphism that would enable their mapping. Primers were designed for nitrate reductase, nitrite reductase, glutamate dehydrogenase and glutamate synthase (GOGAT), and gene fragments were amplified on Triticum aestivum, T. durum, T. monococcum, T. speltoides and T. tauschii. We obtained more than 8 kb of gene sequences, mainly as coding regions (60%). Polymorphism was quantified by comparing two-by-two the three genomes of the hexaploid cultivar Arche and genomes of diploid wheat species. On average, the polymorphism rate was higher for non-coding regions, where it ranged from 1/60 to 1/23, than for coding regions (range: 1/110-1/40) except when the hexaploid D genome was compared to that of T. tauschii (1/800 and 1/816, respectively). Genome-specific primers were devised for the ferredoxin-dependent (Fd)-GOGAT gene, and they enabled the mapping of this gene on homoeologous chromosomes of group 2 using Chinese Spring deletion lines. A single nucleotide polymorphism (SNP) detected between the two hexaploid wheat cultivars Arche and Recital was used to genetically map Fd-GOGAT on chromosome 2D using a population of dihaploid lines. Fd-GOGAT-specific primers were used to estimate the SNP rate on a set of 11 hexaploid and nine Durum wheat genotypes leading to the estimate of 1 SNP/515 bp. We demonstrate that polymorphism detection enables heterologous, homeologous and even paralogous copies to be assigned, even if the elaboration of specific primer pairs is time-consuming and expensive because of the sequencing.
Assuntos
Glutamato Desidrogenase/genética , Glutamato Sintase/genética , Nitrato Redutases/genética , Nitrito Redutases/genética , Triticum/genética , Aminoácido Oxirredutases/genética , Mapeamento Cromossômico , Análise por Conglomerados , Primers do DNA , Nitrato Redutase , Polimorfismo de Nucleotídeo Único , Poliploidia , Análise de Sequência de DNA , Especificidade da EspécieRESUMO
Polymorphism of omega-gliadins was studied in 243 durum wheats from 27 countries using the two-step one-dimensional APAGE/SDS-PAGE technique. A total of 12 bands of different mobility were observed, and four of them were found to be different from those previously detected by Khelifi et al. (1992) in bread wheat. Fifteen alleles, six coded by the Gli-A1 locus and nine coded by the Gli-B1 locus, were identified, accounting for 19 different electrophoretic patterns. Seven new alleles were detected: two at the Gli-A1 locus and five at the Gli-B1 locus. The polymorphism found at the Gli-A1 and Gli-B1 loci was slightly greater than that found in bread wheat. Allelic differences between both species were higher at the Gli-B1 locus. A comparison of the frequencies of alleles in both species was carried out. The null allele, Gli-A1e, was more common in durum wheat than in bread wheat. The Gli-B1b allele, present in 60% of the bread wheats, was found in only 2% of the durum wheats and Gli-B1e, very common in durum wheat (45%), was rare in bread wheat (4%). The Gli-B1IV allele, common in durum wheat (28%), was not detected in bread wheat.