Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Environ Manage ; 355: 120524, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461639

RESUMO

In this study, efficiencies of eight indigenous plants of Baishnabghata Patuli Township (BPT), southeast Kolkata, India, were explored as green barrier species and potentials of plant leaves were exploited for biomonitoring of particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs). The present work focused on studying PM capturing abilities (539.32-2766.27 µg cm-2) of plants (T. divaricata, N. oleander and B. acuminata being the most efficient species in retaining PM) along with the estimation of foliar contents of PM adhered to leaf surfaces (total sPM (large + coarse): 526.59-2731.76 µg cm-2) and embedded within waxes (total wPM (large + coarse): 8.73-34.51 µg cm-2). SEM imaging used to analyse leaf surfaces affirmed the presence of innate corrugated microstructures as main drivers for particle capture. Accumulation capacities of PAHs of vehicular origin (total index, TI > 4) were compared among the species based on measured concentrations (159.92-393.01 µg g-1) which indicated T. divaricata, P. alba and N. cadamba as highest PAHs accumulators. Specific leaf area (SLA) of plants (71.01-376.79 cm2 g-1), a measure of canopy-atmosphere interface, had great relevance in PAHs diffusion. Relative contribution (>90%) of 4-6 ring PAHs to total carcinogenic equivalent and potential as well as 5-6 ring PAHs to total mutagenic equivalent and potential had also been viewed with respect to benzo[a]pyrene. In-depth analysis of foliar traits and adoption of plant-based ranking strategies (air pollution tolerance index (APTI) and anticipated performance index (API)) provided a rationale for green belting. Each of the naturally selected plant species showed evidences of adaptations during abiotic stress to maximize survival and filtering effects for reductive elimination of ambient PM and PAHs, allowing holistic management of green spaces.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Hidrocarbonetos Policíclicos Aromáticos , Material Particulado/análise , Poluentes Atmosféricos/análise , Monitoramento Biológico , Poluição do Ar/análise , Monitoramento Ambiental
2.
J Environ Manage ; 344: 118569, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453299

RESUMO

Electronegative Fluorine has great reactivity and it exists as organic or inorganic fluoride compounds. Biosorption feasibility of fluoride onto alginate-cellulose composites was investigated in this study. Extracted cellulose has been utilized to synthesize calcium alginate impregnated composite beads for fluoride remediation process in batch and fluidized-bed reactors. Physiochemical characteristics were analyzed by FTIR, SEM, TGA and BET. From the BET properties analysis, the surface area of prepared composite beads was 87.13 m2/g. The point zero charge (PZC) value of composite beads was attained at pH 7.32. The relationship between biosorption efficiency and independent variables have been observed to evaluate the effects on the fluoride biosorption efficiency of composites and its components. The hypothetical development of the removal technique has been explained using various nonlinear model-fitting methods to evaluate Isotherm study, bio-sorption Kinetics, Thermodynamic parameters and Mass transfer study. Maximum monolayer adsorption capacity (qm) obtained by following Langmuir model for fluoride removal was found to be 23.809 mg/g at 30 °C using adsorbent dosage of 2 g/L for an initial fluoride concentration of 6 mg/L. The optimized condition for fluoride adsorption experiment was observed by evaluating response surface methodology (RSM) was pH-5.67, dose 1.89 g/L and time 85.71 min and removal was found as 82.79%. Experimental data of fluidized-bed study were evaluated by designing mathematical modeling. Fluidization velocities was adjusted in between Umf and 2Umf for optimizing external mass transfer and adsorbent loss. Regeneration study of fluoride loaded biosorbent and cost analysis of composite production have been estimated.


Assuntos
Fluoretos , Poluentes Químicos da Água , Fluoretos/química , Alginatos , Concentração de Íons de Hidrogênio , Termodinâmica , Adsorção , Cinética , Celulose , Poluentes Químicos da Água/química
3.
Environ Geochem Health ; 45(8): 5761-5781, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36823386

RESUMO

Attempts have been made in the present study for ascertaining the concentrations of atmospheric polycyclic aromatic hydrocarbons (PAHs) using passive biosamplers in preference to conventional air sampling methods. Mechanical stirring, sonication, Soxhlet technique and microwave-assisted Soxhlet extraction (MASE) were employed to extract PAHs from an evergreen plant (Murraya paniculata) leaves (having long life-span) sampled from polluted places of South Kolkata, India, with dense population and heavy traffic. Effects of extraction methods and operational parameters (solvent and time) on the recovery levels of PAHs were also investigated. Purified extracts, acquired through adsorption chromatography, were subjected to GC-MS and HPLC-UV analyses for qualitative and quantitative assessment of PAHs. Spatio-temporal distribution of accumulated PAHs across the sampling sites was monitored over premonsoon, postmonsoon and winter supported by pollutant source characterization. The results displayed that the extraction yields of Soxhlet (272.07 ± 26.15 µg g-1) and MASE (280.17 ± 15.46 µg g-1) were the highest among the four techniques. Conditions of extraction with toluene for 6 h were found to be most favorable for PAHs. In spatio-temporal analysis, total concentrations of PAHs in the foliar samples varied from 200.98 ± 2.72 to 550.79 ± 10.11 µg g-1 dry weight, and the highest values being recorded in the samples of Exide More because of daylong inexorable traffic flow/crowding increasing the burden of ambient PAHs. Widespread changes in meteorology exerted influence on seasonal concentrations of PAHs in plant leaves, and extent of leaf contamination by PAHs was observed extreme in winter followed by postmonsoon and then, premonsoon. Foliar accretion of PAHs differed in the study sites with diverse sources of emission from motor vehicles, fossil fuel and biomass burning along with other human interferences.


Assuntos
Poluentes Atmosféricos , Murraya , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Biológico , Monitoramento Ambiental/métodos , Índia , Poluentes Atmosféricos/análise
4.
J Environ Manage ; 276: 111272, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32871466

RESUMO

In this study, carbonized material was produced using sodium hydroxide treated Sugar cane bagasse (SB), and synthesized materials ware used to prepare Sodium Alginate/SBAC composite beads which were further used as an adsorbent to remove malachite green dye (MG) present in water. Physiochemical characteristics of composite beads were analyzed using FTIR, SEM, TGA, and BET. Adsorption equilibrium data showed excellent fit to the Freundlich model (R2 = 0.994) than to the Langmuir model (R2 = 0.925). Adsorption kinetics study indicated that the MG removal process would be better described by the pseudo-second-order kinetic model. The thermodynamic study suggested the spontaneous and endothermic nature of MG adsorption. By using response surface methodology, the optimum conditions for MG adsorption on composite beads were found to be 115.43 min, 0.3 g/L and pH 8 for contact time, adsorbent mass, and pH respectively and MG adsorption efficiency was 97.88%. The fixed-bed column data were evaluated using several kinetic models and among them, Thomas model showed the best agreement with investigation results. These results revealed that synthesized composite beads have a high affinity toward MG and it could be reasonable, eco-friendly adsorbent for dye removal from wastewater.


Assuntos
Saccharum , Poluentes Químicos da Água , Adsorção , Alginatos , Carvão Vegetal , Concentração de Íons de Hidrogênio , Cinética , Corantes de Rosanilina , Hidróxido de Sódio
5.
J Environ Manage ; 212: 424-432, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29455150

RESUMO

Fluoride has both detrimental and beneficial effects on living beings depending on the concentration and consumption periods. The study presented in this article investigated the feasibility of using neem oil phenolic resin treated lignocellulosic bio-sorbents for fluoride removal from water through fixed bed column study. Results indicated that treated bio-sorbents could remove fluoride both from synthetic and groundwater with variable bed depth, flow rate, fluoride concentration and column diameter. Data obtained from this study indicated that columns with the thickest bed, lowest flow rate, and fluoride concentration showed best column performance. Bio-sorbents used in this study are regenerable and reusable for more than five cycles. The initial materials cost needed to remove one gram of fluoride also found to be lower than the available alternatives. This makes the process more promising candidate to be used for fluoride removal. In addition, the process is also technically advantageous over the available alternatives.


Assuntos
Formaldeído , Glicerídeos , Fenóis , Polímeros , Terpenos , Purificação da Água , Adsorção , Fluoretos , Água , Poluentes Químicos da Água
6.
J Environ Manage ; 223: 185-195, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29929074

RESUMO

This study focuses on the investigation of removal of textile dye (Reactive Yellow) by a combined approach of sorption integrated with biodegradation using low cost adsorbent fly ash immobilized with Pseudomonas sp. To ensure immobilization of bacterial species on treated fly ash, fly ash with immobilized bacterial cells was characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and fluorescence microscopy. Comparative batch studies were carried out using Pseudomonas sp, fly ash and immobilized Pseudomonas sp on flyash and were observed that immobilized Pseudomonas sp on flyash acted as better decolourizing agent. The optimized pH, temperature, and immobilized adsorbent dosage for highest percentage of dye removal were observed to be pH 6, 303 K, 1.2 g/L in all the cases. At optimum condition, the highest percentage of dye removal was found to be 88.51%, 92.62% and 98.72% for sorption (flyash), biodegradation (Pseudomonas sp) and integral approach (Pseudomonas sp on flyash) respectively. Optimization of operating parameters of textile dye decolourization was done by response surface methodology (RSM) using Design Expert 7 software. Phytotoxicity evaluation with Cicer arietinum revealed that seeds exposed to untreated dye effluents showed considerably lower growth, inhibited biochemical, and enzyme parameters with compared to those exposed to treated textile effluents. Thus this immobilized inexpensive technique could be used for removal of synthetic dyes present in textile wastewater.


Assuntos
Corantes/isolamento & purificação , Pseudomonas , Indústria Têxtil , Biodegradação Ambiental , Cinza de Carvão , Purificação da Água
8.
Ecotoxicol Environ Saf ; 119: 47-57, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25966335

RESUMO

Azo dyes pose a major threat to current civilization by appearing in almost all streams of wastewater. The present investigation was carried out to examine the potential of Graphene oxide (GO) nanoplatelets as an efficient, cost-effective and non-toxic azo dye adsorbent for efficient wastewater treatment. The treatment process was optimized using Artificial Neural Network for maximum percentage dye removal and evaluated in terms of varying operational parameters, process kinetics and thermodynamics. A brief toxicity assay was also designed using fresh water snail Bellamya benghalensis to analyze the quality of the treated solution. 97.78% removal of safranin dye was obtained using GO as adsorbent. Characterization of GO nanoplatelets (using SEM, TEM, AFM and FTIR) reported the changes in its structure as well as surface morphology before and after use and explained its prospective as a good and environmentally benign adsorbent in very low quantities. The data recorded when subjected to different isotherms best fitted the Temkin isotherm. Further analysis revealed the process to be endothermic and chemisorption in nature. The verdict of the toxicity assay rendered the treated permeate as biologically safe for discharge or reuse in industrial and domestic purposes.


Assuntos
Compostos Azo/toxicidade , Corantes/toxicidade , Grafite , Resíduos Industriais , Nanopartículas/química , Fenazinas/toxicidade , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/toxicidade , Adsorção , Compostos Azo/química , Corantes/isolamento & purificação , Simulação por Computador , Concentração de Íons de Hidrogênio , Resíduos Industriais/prevenção & controle , Azul de Metileno/química , Redes Neurais de Computação , Óxidos/química , Fenazinas/isolamento & purificação , Termodinâmica , Poluentes Químicos da Água/isolamento & purificação
9.
Environ Sci Pollut Res Int ; 29(41): 61938-61953, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35066847

RESUMO

Titanium dioxide (TiO2) photocatalyst has gained constant interest in the treatment of wastewater because of its greater stability, lower cost, low-toxicity, high efficiency, and more reactivity under UV radiation. On the other hand, Graphene oxide (GO) possesses high electron mobility, and therefore when GO is combined with TiO2, the photocatalytic activity of TiO2 is increased. In this study, nano-composite was synthesized in a hydrothermal reactor using two types of TiO2 nanoparticles (TiO2 consisting of a mixture of rutile and anatase phase (Type 1) and bioreduced TiO2 (Type 2)) and the efficiency of both the TiO2-GO nanocomposite to remove the drug Carbamazepine (CBZ) was investigated. The TiO2-GO nanocomposite with the Type 1 TiO2 exhibited greater efficiency hence further studies were conducted with that composite. The efficiency of TiO2-GO nanocomposite for the purpose of removing CBZ were investigated in presence of different types of incident radiation like Solar radiation, white light and three type of Ultraviolet radiation (A, B, C). The removal of the drug by TiO2-GO composite has been optimized using response surface methodology and artificial neural network. From this study, the maximum reduction was observed was 91.2% and whereas in case of the RSM optimization study the maximum removal that was observed was 91.7%. The validation of the RSM model was done using the mathematical analysis of the model equation of RSM. Different kinetics models was also analyzed using the experimental data and it was observed that it followed pseudo-second-order kinetics. The optimization using ANN also showed a close interaction with the experimental results.


Assuntos
Grafite , Nanocompostos , Poluentes Químicos da Água , Carbamazepina , Catálise , Redes Neurais de Computação , Óxidos , Preparações Farmacêuticas , Titânio , Raios Ultravioleta
10.
Sci Total Environ ; 851(Pt 1): 158238, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36002093

RESUMO

In this study, the heavy metal exposure risk model was employed to assess the exposure risk to a predominantly herbivore waterfowl, Northern Pintail, wintering in two wetland habitats in the Purulia district of West Bengal, located on overlapping Central Asian Flyway (CAF) and East Asian-Australasian Flyway (EAAF). Both wetlands were important staging and roosting grounds for migratory waterfowl for ages. The exposure model was used to quantify the risk of exposure to metals through oral ingestion. Exposure doses of Cu, Zn, Pb, and Cr through food plants ingestion and food-associated sediment consumption pathways were two potent sources of heavy metal exposure in the waterfowl under study. Exposure through water intake was ignored as metals were either of negligible concentrations or below the detection limit in water samples. Heavy metal concentrations showed significant positive correlations between bottom sediment and plant at both sites. At Purulia Sahebbandh (Site 1), the total exposure dose of all four metals was much higher than their conforming tolerable daily intake (TDI), and thereby, the metals might pose threats to the migratory wintering herbivorous waterfowl populations. However, in Adra Sahebbandh (Site 2), total exposure doses of Pb, Zn and Cu were much below their corresponding TDI. The Hazard Quotient (HQ) of Cr was highest followed by nonessential toxic Pb and these two elements could be considered as priority pollutants at Site 1. Prioritize threats were decreased in the following sequence: Cr > Pb > Cu > Zn at Site 1 and Cr > Zn > Pb > Cu at Site 2. Hazard Index was found to be >5 at Site 1 and for much higher metal loads a significant correlation between metal concentrations in plants, bottom sediment and exposure doses were also recorded. Therefore, the peri-urban Purulia Sahebbandh wetland could immediately be considered for risk control and demanded holistic management of important waterfowl habitats.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Animais , China , Patos , Monitoramento Ambiental , Chumbo , Metais Pesados/análise , Plantas/metabolismo , Medição de Risco , Água , Poluentes Químicos da Água/análise , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA