Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37372992

RESUMO

Vitamin B9 (folate)/B12 (cobalamin) deficiency is known to induce brain structural and/or functional retardations. In many countries, folate supplementation, targeting the most severe outcomes such as neural tube defects, is discontinued after the first trimester. However, adverse effects may occur after birth because of some mild misregulations. Various hormonal receptors were shown to be deregulated in brain tissue under these conditions. The glucocorticoid receptor (GR) is particularly sensitive to epigenetic regulation and post-translational modifications. In a mother-offspring rat model of vitamin B9/B12 deficiency, we investigated whether a prolonged folate supplementation could restore the GR signaling in the hypothalamus. Our data showed that a deficiency of folate and vitamin B12 during the in-utero and early postnatal periods was associated with reduced GR expression in the hypothalamus. We also described for the first time a novel post-translational modification of GR that impaired ligand binding and GR activation, leading to decrease expression of one of the GR targets in the hypothalamus, AgRP. Moreover, this brain-impaired GR signaling pathway was associated with behavioral perturbations during offspring growth. Importantly, perinatal and postnatal supplementation with folic acid helped restore GR mRNA levels and activity in hypothalamus cells and improved behavioral deficits.


Assuntos
Ácido Fólico , Deficiência de Vitamina B 12 , Gravidez , Feminino , Animais , Ratos , Ácido Fólico/farmacologia , Receptores de Glucocorticoides/genética , Glucocorticoides , Epigênese Genética , Suplementos Nutricionais , Vitamina B 12/farmacologia , Hipotálamo
2.
J Pathol ; 248(3): 291-303, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30734924

RESUMO

The pathomechanisms that associate a deficit in folate and/or vitamin B12 and the subsequent hyperhomocysteinemia with pathological brain ageing are unclear. We investigated the homocysteinylation of microtubule-associated proteins (MAPs) in brains of patients with Alzheimer's disease or vascular dementia, and in rats depleted in folate and vitamin B12, Cd320 KO mice with selective B12 brain deficiency and H19-7 neuroprogenitors lacking folate. Compared with controls, N-homocysteinylated tau and MAP1 were increased and accumulated in protein aggregates and tangles in the cortex, hippocampus and cerebellum of patients and animals. N-homocysteinylation dissociated tau and MAPs from ß-tubulin, and MS analysis showed that it targets lysine residues critical for their binding to ß-tubulin. N-homocysteinylation increased in rats exposed to vitamin B12 and folate deficit during gestation and lactation and remained significantly higher when they became 450 days-old, despite returning to normal diet at weaning, compared with controls. It was correlated with plasma homocysteine (Hcy) and brain expression of methionine tRNAsynthetase (MARS), the enzyme required for the synthesis of Hcy-thiolactone, the substrate of N-homocysteinylation. Experimental inactivation of MARS prevented the N-homocysteinylation of tau and MAP1, and the dissociation of tau and MAP1 from ß-tubulin and PSD95 in cultured neuroprogenitors. In conclusion, increased N-homocysteinylation of tau and MAP1 is a mechanism of brain ageing that depends on Hcy concentration and expression of MARS enzyme. Its irreversibility and cumulative occurrence throughout life may explain why B12 and folate supplementation of the elderly has limited effects, if any, to prevent pathological brain ageing and cognitive decline. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Doença de Alzheimer/patologia , Demência Vascular/patologia , Hiper-Homocisteinemia/patologia , Proteínas tau/metabolismo , Envelhecimento/fisiologia , Doença de Alzheimer/metabolismo , Animais , Autopsia/métodos , Encéfalo/metabolismo , Encéfalo/patologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Demência Vascular/metabolismo , Feminino , Humanos , Camundongos Knockout , Ratos
3.
Int J Mol Sci ; 21(19)2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008128

RESUMO

Among the numerous candidates for cell therapy of the central nervous system (CNS), olfactory progenitors (OPs) represent an interesting alternative because they are free of ethical concerns, are easy to collect, and allow autologous transplantation. In the present study, we focused on the optimization of neuron production and maturation. It is known that plated OPs respond to various trophic factors, and we also showed that the use of Nerve Growth Factor (NGF) allowed switching from a 60/40 neuron/glia ratio to an 80/20 one. Nevertheless, in order to focus on the integration of OPs in mature neural circuits, we cocultured OPs in primary cultures obtained from the cortex and hippocampus of newborn mice. When dissociated OPs were plated, they differentiated into both glial and neuronal phenotypes, but we obtained a 1.5-fold higher viability in cortex/OP cocultures than in hippocampus/OP ones. The fate of OPs in cocultures was characterized with different markers such as BrdU, Map-2, and Synapsin, indicating a healthy integration. These results suggest that the integration of transplanted OPs might by affected by trophic factors and the environmental conditions/cell phenotypes of the host tissue. Thus, a model of coculture could provide useful information on key cell events for the use of progenitors in cell therapy.


Assuntos
Encéfalo/metabolismo , Neurônios/metabolismo , Córtex Olfatório/metabolismo , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Diferenciação Celular/genética , Linhagem da Célula/genética , Sistema Nervoso Central/metabolismo , Técnicas de Cocultura , Humanos , Camundongos , Fator de Crescimento Neural/genética , Neuroglia/citologia , Neuroglia/metabolismo , Neuroglia/transplante , Neurônios/transplante , Córtex Olfatório/citologia , Córtex Olfatório/transplante , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Oligodendroglia/transplante , Células-Tronco/metabolismo
4.
Int J Mol Sci ; 21(21)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126444

RESUMO

A deficiency in B-vitamins is known to lead to persistent developmental defects in various organs during early life. The nervous system is particularly affected with functional retardation in infants and young adults. In addition, even if in some cases no damage appears evident in the beginning of life, correlations have been shown between B-vitamin metabolism and neurodegenerative diseases. However, despite the usual treatment based on B-vitamin injections, the neurological outcomes remain poorly rescued in the majority of cases, compared with physiological functions. In this study, we explored whether a neonatal stimulation of neurogenesis could compensate atrophy of specific brain areas such as the hippocampus, in the case of B-vitamin deficiency. Using a physiological mild transient hypoxia within the first 24 h after birth, rat-pups, submitted or not to neonatal B-vitamin deficiency, were followed until 330-days-of-age for their cognitive capacities and their hippocampus status. Our results showed a gender effect since females were more affected than males by the deficiency, showing a persistent low body weight and poor cognitive performance to exit a maze. Nevertheless, the neonatal stimulation of neurogenesis with hypoxia rescued the maze performance during adulthood without modifying physiological markers, such as body weight and circulating homocysteine. Our findings were reinforced by an increase of several markers at 330-days-of-age in hypoxic animals, such as Ammon's Horn 1hippocampus (CA1) thickness and the expression of key actors of synaptic dynamic, such as the NMDA-receptor-1 (NMDAR1) and the post-synaptic-density-95 (PSD-95). We have not focused our conclusion on the neonatal hypoxia as a putative treatment, but we have discussed that, in the case of neurologic retardation associated with a reduced B-vitamin status, stimulation of the latent neurogenesis in infants could ameliorate their quality of life during their lifespan.


Assuntos
Envelhecimento/patologia , Comportamento Animal , Disfunção Cognitiva/prevenção & controle , Ácido Fólico/metabolismo , Neurogênese , Deficiência de Vitamina B 12/complicações , Animais , Animais Recém-Nascidos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Feminino , Masculino , Aprendizagem em Labirinto , Gravidez , Ratos , Ratos Wistar , Vitamina B 12/metabolismo , Vitaminas/metabolismo
5.
Int J Mol Sci ; 20(4)2019 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-30813413

RESUMO

Vitamins B9 (folate) and B12 act as methyl donors in the one-carbon metabolism which influences epigenetic mechanisms. We previously showed that an embryofetal deficiency of vitamins B9 and B12 in the rat increased brain expression of let-7a and miR-34a microRNAs involved in the developmental control of gene expression. This was reversed by the maternal supply with folic acid (3 mg/kg/day) during the last third of gestation, resulting in a significant reduction of associated birth defects. Since the postnatal brain is subject to intensive developmental processes, we tested whether further folate supplementation during lactation could bring additional benefits. Vitamin deficiency resulted in weaned pups (21 days) in growth retardation, delayed ossification, brain atrophy and cognitive deficits, along with unchanged brain level of let-7a and decreased expression of miR-34a and miR-23a. Whereas maternal folic acid supplementation helped restore the levels of affected microRNAs, it led to a reduction of structural and functional defects taking place during the perinatal/postnatal periods, such as learning/memory capacities. Our data suggest that a gestational B-vitamin deficiency could affect the temporal control of the microRNA regulation required for normal development. Moreover, they also point out that the continuation of folate supplementation after birth may help to ameliorate neurological symptoms commonly associated with developmental deficiencies in folate and B12.


Assuntos
Suplementos Nutricionais , Ácido Fólico/farmacologia , Crescimento e Desenvolvimento/efeitos dos fármacos , Animais , Comportamento Animal , Modelos Animais de Doenças , Feminino , Ácido Fólico/sangue , Homocisteína/sangue , Metilação , MicroRNAs/genética , MicroRNAs/metabolismo , Sistema Nervoso/crescimento & desenvolvimento , Gravidez , Ratos Wistar , Vitamina B 12/sangue
6.
Int J Mol Sci ; 20(20)2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615150

RESUMO

The micronutrients vitamins B9 and B12 act as methyl donors in the one-carbon metabolism involved in transmethylation reactions which critically influence epigenetic mechanisms and gene expression. Both vitamins are essential for proper development, and their deficiency during pregnancy has been associated with a wide range of disorders, including persisting growth retardation. Energy homeostasis and feeding are centrally regulated by the hypothalamus which integrates peripheral signals and acts through several orexigenic and anorexigenic mediators. We studied this regulating system in a rat model of methyl donor deficiency during gestation and lactation. At weaning, a predominance of the anorexigenic pathway was observed in deficient pups, with increased plasma peptide YY and increased hypothalamic pro-opiomelanocortin (POMC) mRNA, in line with abnormal leptin, ghrelin, and insulin secretion and/or signaling during critical periods of fetal and/or postnatal development of the hypothalamus. These results suggest that early methyl donor deficiency can affect the development and function of energy balance circuits, resulting in growth and weight deficits. Maternal administration of folic acid (3 mg/kg/day) during the perinatal period tended to rectify peripheral metabolic signaling and central neuropeptide and receptor expression, leading to reduced growth retardation.


Assuntos
Metabolismo Energético/genética , Grelina/genética , Peptídeo YY/genética , Pró-Opiomelanocortina/genética , Animais , Depressores do Apetite/farmacologia , Metabolismo Energético/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Feminino , Ácido Fólico/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Grelina/sangue , Hipotálamo/metabolismo , Insulina/sangue , Insulina/genética , Lactação , Leptina/sangue , Leptina/genética , Metilação/efeitos dos fármacos , Peptídeo YY/sangue , Gravidez , Pró-Opiomelanocortina/sangue , RNA Mensageiro/genética , Ratos , Vitamina B 12/genética , Vitamina B 12/farmacologia
7.
Int J Mol Sci ; 20(22)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739389

RESUMO

Deficiencies in methyl donors, folate, and vitamin B12 are known to lead to brain function defects. Fetal development is the most studied but data are also available for such an impact in elderly rats. To compare the functional consequences of nutritional deficiency in young versus adult rats, we monitored behavioral outcomes of cerebellum and hippocampus circuits in the offspring of deficient mother rats and in adult rats fed a deficient diet from 2 to 8 months-of-age. We present data showing that the main deleterious consequences are found in young ages compared to adult ones, in terms of movement coordination and learning abilities. Moreover, we obtained sex and age differences in the deleterious effects on these functions and on neuronal layer integrity in growing young rats, while deficient adults presented only slight functional alterations without tissue damage. Actually, the cerebellum and the hippocampus develop and maturate according to different time lap windows and we demonstrate that a switch to a normal diet can only rescue circuits that present a long permissive window of time, such as the cerebellum, whereas the hippocampus does not. Thus, we argue, as others have, for supplements or fortifications given over a longer time than the developmental period.


Assuntos
Encéfalo/metabolismo , Encéfalo/fisiopatologia , Deficiências Nutricionais/complicações , Deficiências Nutricionais/metabolismo , Desenvolvimento Fetal , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/metabolismo , Animais , Cognição , Deficiências Nutricionais/etiologia , Dieta , Modelos Animais de Doenças , Feminino , Deficiência de Ácido Fólico/complicações , Deficiência de Ácido Fólico/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Aprendizagem em Labirinto , Ratos
8.
FASEB J ; 29(9): 3713-25, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26018677

RESUMO

Deficiency in the methyl donors vitamin B12 and folate during pregnancy and postnatal life impairs proper brain development. We studied the consequences of this combined deficiency on cerebellum plasticity in offspring from rat mothers subjected to deficient diet during gestation and lactation and in rat neuroprogenitor cells expressing cerebellum markers. The major proteomic change in cerebellum of 21-d-old deprived females was a 2.2-fold lower expression of synapsins, which was confirmed in neuroprogenitors cultivated in the deficient condition. A pathway analysis suggested that these proteomic changes were related to estrogen receptor α (ER-α)/Src tyrosine kinase. The influence of impaired ER-α pathway was confirmed by abnormal negative geotaxis test at d 19-20 and decreased phsophorylation of synapsins in deprived females treated by ER-α antagonist 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride (MPP). This effect was consistent with 2-fold decreased expression and methylation of ER-α and subsequent decreased ER-α/PPAR-γ coactivator 1 α (PGC-1α) interaction in deficiency condition. The impaired ER-α pathway led to decreased expression of synapsins through 2-fold decreased EGR-1/Zif-268 transcription factor and to 1.7-fold reduced Src-dependent phosphorylation of synapsins. The treatment of neuroprogenitors with either MPP or PP1 (4-(4'-phenoxyanilino)-6,7-dimethoxyquinazoline, 6,7-dimethoxy-N-(4-phenoxyphenyl)-4-quinazolinamine, SKI-1, Src-l1) Src inhibitor produced similar effects. In conclusion, the deficiency during pregnancy and lactation impairs the expression of synapsins through a deregulation of ER-α pathway.


Assuntos
Encéfalo/metabolismo , Receptor alfa de Estrogênio/metabolismo , Deficiência de Ácido Fólico , Regulação da Expressão Gênica no Desenvolvimento , Lactação , Sinapsinas/biossíntese , Deficiência de Vitamina B 12 , Animais , Encéfalo/embriologia , Encéfalo/patologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/antagonistas & inibidores , Feminino , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , PPAR gama/metabolismo , Gravidez , Ratos
9.
Pflugers Arch ; 466(5): 833-50, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23999818

RESUMO

Barker's concept of 'foetal programming' proposes that intrauterine growth restriction (IUGR) predicts complex metabolic diseases through relationships that may be further modified by the postnatal environment. Dietary restriction and deficit in methyl donors, folate, vitamin B12, and choline are used as experimental conditions of foetal programming as they lead to IUGR and decreased birth weight. Overfeeding and deficit in methyl donors increase central fat mass and lead to a dramatic increase of plasma free fatty acids (FFA) in offspring. Conversely, supplementing the mothers under protein restriction with folic acid reverses metabolic and epigenomic phenotypes of offspring. High-fat diet or methyl donor deficiency (MDD) during pregnancy and lactation produce liver steatosis and myocardium hypertrophy that result from increased import of FFA and impaired fatty acid ß-oxidation, respectively. The underlying molecular mechanisms show dysregulations related with similar decreased expression and activity of sirtuin 1 (SIRT1) and hyperacetylation of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α). High-fat diet and overfeeding impair AMPK-dependent phosphorylation of PGC-1α, while MDD decreases PGC-1α methylation through decreased expression of PRMT1 and cellular level of S-adenosyl methionine. The visceral manifestations of metabolic syndrome are under the influence of endoplasmic reticulum (ER) stress in overnourished animal models. These mechanisms should also deserve attention in the foetal programming effects of MDD since vitamin B12 influences ER stress through impaired SIRT1 deacetylation of HSF1. Taken together, similarities and synergies of high-fat diet and MDD suggest, therefore, considering their consecutive or contemporary influence in the mechanisms of complex metabolic diseases.


Assuntos
Epigênese Genética , Ácidos Graxos/metabolismo , Desenvolvimento Fetal , Coração Fetal/metabolismo , Transtornos da Nutrição Fetal/metabolismo , Fígado/metabolismo , Animais , Feminino , Coração Fetal/embriologia , Coração Fetal/fisiologia , Genoma Humano , Humanos , Fígado/embriologia , Fígado/fisiologia , Nutrigenômica
10.
Am J Physiol Endocrinol Metab ; 307(11): E1009-19, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25294213

RESUMO

Early deficiency of the methyl donors folate and vitamin B12 produces hyperhomocysteinemia and cognitive and motor disorders in 21-day-old rat pups from dams fed a diet deficient in methyl donors during gestation and lactation. These disorders are associated with impaired neurogenesis and altered synaptic plasticity in cerebellum. We aimed to investigate whether these disorders could be related to impaired expression of neurosteroidogenesis-associated proteins, key regulator receptors, and some steroid content in the cerebellum. The methyl donor deficiency produced a decreased concentration of folate and vitamin B12, along with accumulation of homocysteine in Purkinje cells in both sexes, whereas the S-adenosylmethionine/S-adenosylhomocysteine ratio was reduced only in females. The transcription level and protein expression of StAR, aromatase, ERα, ERß, and LH receptors were decreased only in females, with a marked effect in Purkinje cells, as shown by immunohistochemistry. Consistently, reduced levels of estradiol and pregnenolone were measured in cerebellar extracts of females only. The decreased expression levels of the transcriptional factors CREB, phospho-CREB, and SF-1, the lesser increase of cAMP concentration, and the lower level of phospho-PKC in the cerebellum of deficient females suggest that the activation of neurosteroidogenesis via cAMP-mediated signaling pathways associated with LHR activation would be altered. In conclusion, a gestational methyl donor deficiency impairs neurosteroidogenesis in cerebellum in a sex-dependent manner.


Assuntos
Cerebelo/metabolismo , AMP Cíclico/fisiologia , Deficiência de Ácido Fólico/metabolismo , Neurotransmissores/biossíntese , Transdução de Sinais/fisiologia , Deficiência de Vitamina B 12/metabolismo , Animais , Estradiol/metabolismo , Feminino , Microssomos/metabolismo , Mitocôndrias/metabolismo , Fosfoproteínas/biossíntese , Fosfoproteínas/genética , Pregnenolona/metabolismo , Ratos , Ratos Wistar , Transcrição Gênica/genética , Transcrição Gênica/fisiologia
11.
Br J Nutr ; 111(6): 1021-31, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24229781

RESUMO

Gestational methyl donor deficiency (MDD) leads to growth retardation as well as to cognitive and motor disorders in 21-d-old rat pups. These disorders are related to impaired neurogenesis in the cerebral neurogenic areas. Olfactory bulbs (OB), the main target of neuronal progenitors originating from the subventricular zone, play a critical role during the postnatal period by allowing the pups to identify maternal odour. We hypothesised that growth retardation could result from impaired suckling due to impaired olfactory discrimination through imbalanced apoptosis/neurogenesis in the OB. Since neurosteroidogenesis modulates neurogenesis in OB, in the present study, we investigated whether altered neurosteroidogenesis could explain some these effects. Pups born to dams fed a normal diet (n 24) and a MDD diet (n 27) were subjected to olfactory tests during the lactation and weaning periods (n 24 and 20, respectively). We studied the markers of apoptosis/neurogenesis and the expression levels of the key neurosteroidogenic enzyme aromatase, the cholesterol-transfer protein StAR (steroidogenic acute regulatory protein) and the ERα oestrogen receptor and the content of oestradiol in OB. The 21-d-old MDD female pups displayed lower body weight and impaired olfactory discrimination when compared with the control pups. MDD led to greater homocysteine accumulation and more pronounced apoptosis, along with impaired cell proliferation in the OB of female pups. The expression levels of aromatase, StAR and ERα as well as the content of oestradiol were lower in the OB of the MDD female pups than in those of the control female pups. In conclusion, gestational MDD may alter olfactory discrimination performances by affecting neurogenesis, apoptosis and neurosteroidogenesis in OB in a sex-dependent manner. It may be involved in growth retardation through impaired suckling.


Assuntos
Animais Recém-Nascidos/metabolismo , Metilação de DNA/fisiologia , Neurotransmissores/biossíntese , Transtornos do Olfato/etiologia , Bulbo Olfatório/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Animais , Apoptose , Aromatase/análise , Aromatase/genética , Dieta , Receptor alfa de Estrogênio/análise , Receptor alfa de Estrogênio/genética , Feminino , Expressão Gênica , Homocisteína/metabolismo , Lactação , Masculino , Metilação , Neurogênese , Fosfoproteínas/análise , Fosfoproteínas/genética , Gravidez , Ratos , Ratos Wistar , Desmame
12.
FASEB J ; 26(10): 3980-92, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22713523

RESUMO

Despite the key role in neuronal development of a deficit in the methyl donor folate, little is known on the underlying mechanisms. We therefore studied the consequences of folate deficiency on proliferation, differentiation, and plasticity of the rat H19-7 hippocampal cell line. Folate deficit reduced proliferation (17%) and sensitized cells to differentiation-associated apoptosis (+16%). Decreased production (-58%) of S-adenosylmethionine (the universal substrate for transmethylation reactions) and increased expression of histone deacetylases (HDAC4,6,7) would lead to epigenomic changes that may impair the differentiation process. Cell polarity, vesicular transport, and synaptic plasticity were dramatically affected, with poor neurite outgrowth (-57%). Cell treatment by an HDAC inhibitor (SAHA) led to a noticeable improvement of cell polarity and morphology, with longer processes. Increased homocysteine levels (+55%) consecutive to folate shortage produced homocysteinylation, evidenced by coimmunoprecipitations and mass spectrometry, and aggregation of motor proteins dynein and kinesin, along with functional alterations, as reflected by reduced interactions with partner proteins. Prominent homocysteinylation of key neuronal proteins and subsequent aggregation certainly constitute major adverse effects of folate deficiency, affecting normal development with possible long-lasting consequences.


Assuntos
Deficiência de Ácido Fólico/metabolismo , Ácido Fólico/farmacologia , Hipocampo/citologia , Homocisteína/farmacologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Animais , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Hep G2 , Humanos , Imuno-Histoquímica , Neurônios/metabolismo , Ligação Proteica , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Vitamina B 12/farmacologia
13.
J Hepatol ; 57(2): 344-51, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22521344

RESUMO

BACKGROUND & AIMS: Folate and cobalamin are methyl donors needed for the synthesis of methionine, which is the precursor of S-adenosylmethionine, the substrate of methylation in epigenetic, and epigenomic pathways. Methyl donor deficiency produces liver steatosis and predisposes to metabolic syndrome. Whether impaired fatty acid oxidation contributes to this steatosis remains unknown. METHODS: We evaluated the consequences of methyl donor deficient diet in liver of pups from dams subjected to deficiency during gestation and lactation. RESULTS: The deprived rats had microvesicular steatosis, with increased triglycerides, decreased methionine synthase activity, S-adenosylmethionine, and S-adenosylmethionine/S-adenosylhomocysteine ratio. We observed no change in apoptosis markers, oxidant and reticulum stresses, and carnityl-palmitoyl transferase 1 activity, and a decreased expression of SREBP-1c. Impaired beta-oxidation of fatty acids and carnitine deficit were the predominant changes, with decreased free and total carnitines, increased C14:1/C16 acylcarnitine ratio, decrease of oxidation rate of palmitoyl-CoA and palmitoyl-L-carnitine and decrease of expression of novel organic cation transporter 1, acylCoA-dehydrogenase and trifunctional enzyme subunit alpha and decreased activity of complexes I and II. These changes were related to lower protein expression of ER-α, ERR-α and HNF-4α, and hypomethylation of PGC-1α co-activator that reduced its binding with PPAR-α, ERR-α, and HNF-4α. CONCLUSIONS: The liver steatosis resulted predominantly from hypomethylation of PGC1-α, decreased binding with its partners and subsequent impaired mitochondrial fatty acid oxidation. This link between methyl donor deficiency and epigenomic deregulations of energy metabolism opens new insights into the pathogenesis of fatty liver disease, in particular, in relation to the fetal programming hypothesis.


Assuntos
Receptor alfa de Estrogênio/fisiologia , Ácidos Graxos/metabolismo , Fator 4 Nuclear de Hepatócito/fisiologia , Fígado/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores de Estrogênio/fisiologia , Fatores de Transcrição/metabolismo , Animais , Transporte de Elétrons , Estresse do Retículo Endoplasmático , Metabolismo Energético , Receptor alfa de Estrogênio/análise , Fígado Gorduroso/etiologia , Ácido Fólico/sangue , Fator 4 Nuclear de Hepatócito/análise , Metilação , Oxirredução , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Ratos Wistar , Receptores de Estrogênio/análise , Vitamina B 12/sangue , Receptor ERRalfa Relacionado ao Estrogênio
14.
Proc Natl Acad Sci U S A ; 106(51): 21930-5, 2009 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-19959661

RESUMO

Vitamin B12 (cobalamin, Cbl) is indispensable for proper brain development and functioning, suggesting that it has neurotrophic effects beside its well-known importance in metabolism. The molecular basis of these effects remains hypothetical, one of the reasons being that no efficient cell model has been made available for investigating the consequences of B12 cellular deficiency in neuronal cells. Here, we designed an approach by stable transfection of NIE115 neuroblastoma cells to impose the anchorage of a chimeric B12-binding protein, transcobalamin-oleosin (TO) to the intracellular membrane. This model produced an intracellular sequestration of B12 evidenced by decreased methyl-Cbl and S-adenosylmethionine and increased homocysteine and methylmalonic acid concentrations. B12 deficiency affected the proliferation of NIE115 cells through an overall increase in catalytic protein phosphatase 2A (PP2A), despite its demethylation. It promoted cellular differentiation by improving initial outgrowth of neurites and, at the molecular level, by augmenting the levels of proNGF and p75(NTR). The up-regulation of PP2A and pro-nerve growth factor (NGF) triggered changes in ERK1/2 and Akt, two signaling pathways that influence the balance between proliferation and neurite outgrowth. Compared with control cells, a 2-fold increase of p75(NTR)-regulated intramembraneous proteolysis (RIP) was observed in proliferating TO cells (P < 0.0001) that was associated with an increased expression of two tumor necrosis factor (TNF)-alpha converting enzyme (TACE) secretase enzymes, Adam 10 and Adam 17. In conclusion, our data show that B12 cellular deficiency produces a slower proliferation and a speedier differentiation of neuroblastoma cells through interacting signaling pathways that are related with increased expression of PP2A, proNGF, and TACE.


Assuntos
Proteínas ADAM/metabolismo , Diferenciação Celular , Proliferação de Células , Fator de Crescimento Neural/metabolismo , Neuroblastoma/patologia , Proteína Fosfatase 2/metabolismo , Precursores de Proteínas/metabolismo , Regulação para Cima , Deficiência de Vitamina B 12/patologia , Proteína ADAM17 , Linhagem Celular Tumoral , Humanos , Neuroblastoma/metabolismo , Plasmídeos , Deficiência de Vitamina B 12/metabolismo
15.
Bull Acad Natl Med ; 196(9): 1829-42, 2012 Dec.
Artigo em Francês | MEDLINE | ID: mdl-24552105

RESUMO

Folates are needed for synthesis of methionine, the precursor of S-adenosyl methionine (SAM). They play therefore a key role in nutrition and epigenomics by fluxing monocarbons towards synthesis or methylation of DNA and RNA, and methylation of gene transregulators, respectively. The deficiency produces intrauterine growth retardation and birth dejects. Folate deficiency deregulates epigenomic mechanisms related to fetal programming through decreased cellular availability of SAM. Epigenetic mechanisms of folate deficiency are illustrated by inheritance of coat colour of agouti mice model and altered expression of Igf2/H19 imprinting genes. Dietary exposure to fumonisin FB1 acts synergistically with folate deficiency on alterations of heterochromatin assembly. Deficiency in folate and vitamin B12 produces impaired fatty acid oxidation in liver and heart through imbalanced methylation and acetylation of PGC1-alpha and decreased expression of SIRT1, and long-lasting cognitive disabilities through impaired hippocampal cell proliferation, differentiation and plasticity and atrophy of hippocampal CA1. Deciphering these mechanisms will help understand the discordances between experimental models and population studies on folate supplementation.


Assuntos
Epigênese Genética/fisiologia , Desenvolvimento Fetal/genética , Deficiência de Ácido Fólico/genética , Animais , Epigenômica , Feminino , Deficiência de Ácido Fólico/complicações , Humanos , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Camundongos , Estado Nutricional/genética , Gravidez
16.
Am J Pathol ; 176(1): 270-7, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19948829

RESUMO

Methyl donor deficiency (MDD) during pregnancy influences intrauterine development. Ghrelin is expressed in the stomach of fetuses and influences fetal growth, but MDD influence on gastric ghrelin is unknown. We examined the gastric ghrelin system in MDD-induced intrauterine growth retardation. By using specific markers and approaches (such as periodic acid-Schiff, bromodeoxyuridine, homocysteine, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling, immunostaining, reverse transcription-polymerase chain reaction), we studied the gastric oxyntic mucosa cellular organization and ghrelin gene expression in the mucosa in 20-day-old fetuses and weanling pups, and plasma ghrelin concentration in weanling rat pups of dams either normally fed or deprived of choline, folate, vitamin B6, and vitamin B12 during gestation and suckling periods. MDD fetuses weighed less than controls; the weight deficit reached 57% at weaning (P < 0.001). Both at the end of gestation and at weaning, they presented with an aberrant gastric oxyntic mucosa formation with loss of cell polarity, anarchic cell migration, abnormal progenitor differentiation, apoptosis, and signs of surface layer erosion. Ghrelin cells were abnormally located in the pit region of oxyntic glands. At weaning, plasma ghrelin levels were decreased (-28%; P < 0.001) despite unchanged mRNA expression in the stomach. This decrease was associated with lower body weight. Taken together, these data indicate that one mechanism through which MDD influences fetal programming is the remodeling of gastric cellular organization, leading to dysfunction of the ghrelin system and dramatic effects on growth.


Assuntos
Deficiências Nutricionais/embriologia , Deficiências Nutricionais/fisiopatologia , Desenvolvimento Fetal , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Grelina/metabolismo , Animais , Peso Corporal , Linhagem da Célula , Colina/metabolismo , Células Enteroendócrinas/metabolismo , Feminino , Ácido Fólico/metabolismo , Grelina/sangue , Hormônio do Crescimento/sangue , Homocisteína/sangue , Imuno-Histoquímica , Gravidez , Ratos , Ratos Wistar , Vitamina B 12/metabolismo , Desmame
17.
Mol Neurobiol ; 58(3): 1024-1035, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33078371

RESUMO

Cobalamin (Cbl, vitamin B12) deficiency or inborn errors of Cbl metabolism can produce neurologic disorders resistant to therapies, including cognitive dysfunction, mild mental retardation, memory impairment, and confusion. We used Cd320 KO mouse as a model for studying the pathological mechanisms of these disorders. Cd320 encodes the receptor (TCblR) needed for the cellular uptake of Cbl in the brain. The Cd320-/- mouse model presented an impaired learning memory that could be alleviated by a moderate stress, which produced also a greater increase of plasma corticosterone, compared to wild type animals. The present study investigated such a putative rescue mechanism in Cbl-deficient mice. At the molecular level in the brain of Cd320-/- mouse, the decreased methylation status led to a downregulation of glucocorticoid nuclear receptor (GR)/PPAR-gamma co-activator-1 alpha (PGC-1α) pathway. This was evidenced by the decreased expression of GR, decreased methylation of GR and PGC1α, and decreased dimerization and interaction of GR with PGC1α. This led to altered synaptic activity evidenced by decreased interaction between the NMDA glutamatergic receptor and the PSD95 post-synaptic protein and a lower expression of Egr-1 and synapsin 1, in Cd320-/- mice compared to the wild type animals. Intraperitoneal injection of hydrocortisone rescued these molecular changes and normalized the learning memory tests. Our study suggests adaptive influences of moderate stress on loss of memory and cognition due to brain Cbl deficiency. The GR pathway could be a potential target for innovative therapy of cognitive manifestations in patients with poor response to conventional Cbl treatment.


Assuntos
Encéfalo/fisiopatologia , Hipocampo/fisiopatologia , Memória , Plasticidade Neuronal/fisiologia , Receptores de Glucocorticoides/metabolismo , Deficiência de Vitamina B 12/fisiopatologia , Animais , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Glucocorticoides/farmacologia , Hipocampo/efeitos dos fármacos , Hidrocortisona/administração & dosagem , Hidrocortisona/farmacologia , Masculino , Camundongos Knockout , Plasticidade Neuronal/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
18.
Hippocampus ; 20(8): 949-61, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19714568

RESUMO

In the context of their potential implication in regenerative strategies, we characterized cell mechanisms underlying the fate of embryonic rat hippocampal H19-7 progenitors in culture upon induction of their differentiation, and tested their capacities to integrate into a neuronal network in vitro. Without addition of growth factors, nearly 100% of cells expressed various neuronal markers, with a progressive rise of the expression of Synapsin I and II, suggesting that cells developed as mature neurons with synaptogenic capacities. Fully differentiated neurons were identified as glutamatergic and expressed the receptor-associated protein PSD-95. Quantification of ATP showed that 60% of cells died within 24 h after differentiation. Cell death was shown to imply Erk1/2-dependent intrinsic mitochondrial apoptosis signaling pathway, with activation of caspase-9 and -3, finally leading to single-strand DNA. Surviving neurons displayed high levels of Akt, phospho-Akt, and antiapoptotic proteins such as Bcl-2 and Bcl-XL, with decreased caspase activation. In the absence of trophic support, the proapoptotic death-associated protein (DAP) kinase was dramatically stimulated by 24 h postdifferentiation, along with increased levels of p38 and phospho-p38, and caspase reactivation. These findings show that different signaling pathways are sequentially triggered by differentiation, and highlight that ultimate cell death would involve p38 and DAP kinase activation. This was supported by the improvement of cell survival at 24-h postdifferentiation when cells were treated by PD169316, a specific inhibitor of p38. Finally, when seeded on rat hippocampal primary cultured neurons, a significant number of differentiated H19-7 cells were able to survive and to develop cell-cell communication.


Assuntos
Diferenciação Celular/fisiologia , Hipocampo/citologia , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Células-Tronco/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Bromodesoxiuridina/metabolismo , Caspases/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura/métodos , Proteína 4 Homóloga a Disks-Large , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Imidazóis/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Fatores de Tempo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
19.
Mol Neurobiol ; 56(2): 892-906, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29804229

RESUMO

Gestational methyl donor (especially B9 and B12 vitamins) deficiency is involved in birth defects and brain development retardation. The underlying molecular mechanisms that are dysregulated still remain poorly understood, in particular in the cerebellum. As evidenced from previous data, females are more affected than males. In this study, we therefore took advantage of a validated rat nutritional model and performed a microarray analysis on female progeny cerebellum, in order to identify which genes and molecular pathways were disrupted in response to methyl donor deficiency. We found that cerebellum development is altered in female pups, with a decrease of the granular cell layer thickness at postnatal day 21. Furthermore, we investigated the involvement of the Wnt signaling pathway, a major molecular pathway involved in neuronal development and later on in synaptic assembly and neurotransmission processes. We found that Wnt canonical pathway was disrupted following early methyl donor deficiency and that neuronal targets were selectively enriched in the downregulated genes. These results could explain the structural brain defects previously observed and highlighted new genes and a new molecular pathway affected by nutritional methyl donor deprivation.


Assuntos
Encéfalo/metabolismo , Neurogênese/fisiologia , Neurônios/citologia , Via de Sinalização Wnt/fisiologia , Animais , Células Cultivadas , Feminino , Ratos Wistar , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA