Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 25(15): 14827-14843, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29541985

RESUMO

This paper presents the first observational results from an Indian station on the long-term changes in surface ozone (O3)-a major environmental pollutant and green house gas-over a period of about 40 years. It is based on the in situ measurements carried out during 1973-1975, 1983-1985, 1997-1998 and 2004-2014 at the tropical coastal station, Thiruvananthapuram. From 1973 to 1997, surface O3 shows a slow increase of ~ 0.1 ppb year-1 and a faster increase of 0.4 ppb year-1 afterwards till 2009 after which it showed a levelling off till 2012 followed by a minor decrease. The highest rate of increase is observed during 2005 to 2009 (2 ppb year-1), and the overall increase from 1973 to 2012 is ~ 10 ppb. The increase in day time O3 (peak O3) is estimated as 0.42 ppb year-1 during 1997-2012 and 2.93 ppb year-1 during 2006-2012. Interestingly, the long-term trend in O3 showed seasonal dependence which is more pronounced during O3 peaking seasons (winter/summer). The observed trends were analysed in the light of the changes in NO2, a major outcome of anthropogenic activities and methane which has both natural and anthropogenic sources and also meteorological parameters. Surface O3 and NO x exhibited positive association, but with varying rate of increase of O3 for NO x < 4 and > 4 ppb. Methane, a precursor of O3 also showed increase in tune with O3. Unlike many other high-latitude locations, meteorology plays a significant role in the long-term trends in O3 at this tropical site with water vapour abundance and strong solar irradiance which favour photochemistry. A comparison with the corresponding changes in the satellite-retrieved tropospheric column O3 (TCO) also showed an increase of 0.03 DU year-1 during 1996-2005 which enhanced to 0.12 DU year-1 after 2005. Both surface O3 and satellite-retrieved TCO were positively correlated with daily maximum temperature, increasing at the rate of 1.54 ppb °C-1 and 1.9 DU °C-1, respectively, on yearly basis. Surface O3 is found to be negatively correlated with water vapour content (ρv) at this tropical site, but at higher levels of ρv, O3 shows a positive trend.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Ozônio/análise , Tempo (Meteorologia) , Monitoramento Ambiental/métodos , Índia , Ozônio/química , Estações do Ano , Temperatura , Clima Tropical
2.
J Geophys Res Atmos ; 123(7): 3688-3703, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33614367

RESUMO

Tropospheric aerosol optical depth (AOD) over India was simulated by Goddard Earth Observing System (GEOS)-Chem, a global 3-D chemical-transport model, using SMOG (Speciated Multi-pOllutant Generator from Indian Institute of Technology Bombay) and GEOS-Chem (GC) (current inventories used in the GEOS-Chem model) inventories for 2012. The simulated AODs were ~80% (SMOG) and 60% (GC) of those measured by the satellites (Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging SpectroRadiometer). There is no strong seasonal variation in AOD over India. The peak AOD values are observed/simulated during summer. The simulated AOD using SMOG inventory has particulate black and organic carbon AOD higher by a factor ~5 and 3, respectively, compared to GC inventory. The model underpredicted coarse-mode AOD but agreed for fine-mode AOD with Aerosol Robotic Network data. It captured dust only over Western India, which is a desert, and not elsewhere, probably due to inaccurate dust transport and/or noninclusion of other dust sources. The calculated AOD, after dust correction, showed the general features in its observed spatial variation. Highest AOD values were observed over the Indo-Gangetic Plain followed by Central and Southern India with lowest values in Northern India. Transport of aerosols from Indo-Gangetic Plain and Central India into Eastern India, where emissions are low, is significant. The major contributors to total AOD over India are inorganic aerosol (41-64%), organic carbon (14-26%), and dust (7-32%). AOD over most regions of India is a factor of 5 or higher than over the United States.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA