Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Microbiol ; 132(6): 4371-4387, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35286009

RESUMO

AIMS: Phytonematodes are a constraint on crop production and have been controlled using nematicides; these are highly toxic and legislation in Europe and elsewhere is prohibiting their use and alternatives are being sought. Pasteuria penetrans is a hyperparasitic bacterium that form endospores and have potential to control root-knot nematodes (Meloidogyne spp.), but their attachment to the nematode cuticle is host-specific. Understanding host specificity has relied upon endospore inhibition bioassays using immunological and biochemical approaches. Phylogenetic analysis of survey sequences has shown P. penetrans to be closely related to Bacillus and to have a diverse range of collagen-like fibres which we hypothesise to be involved in the endospore adhesion. However, due to the obligately hyperparasitic nature of Pasteuria species, identifying and characterizing these collagenous-like proteins through gain of function has proved difficult and new approaches are required. METHODS AND RESULTS: Using antibodies raised to synthetic peptides based on Pasteuria collagen-like genes we show similarities between P. penetrans and the more easily cultured bacterium Bacillus thuringiensis and suggest it be used as a gain of function platform/model. Using immunological approaches similar proteins between P. penetrans and B. thuringiensis are identified and characterized, one >250 kDa and another ~72 kDa are glycosylated with N-acetylglucosamine and both of which are digested if treated with collagenase. These treatments also affected endospore attachment and suggest these proteins are involved in adhesion of endospores to nematode cuticle. CONCLUSION: There are conserved similarities in the collagen-like proteins present on the surface of endospores of both P. penetrans and B. thuringiensis. SIGNIFICANCE AND IMPACT OF STUDY: As B. thuringiensis is relatively easy to culture and can be transformed, it could be developed as a platform for studying the role of the collagen-like adhesins from Pasteuria in endospore adhesion.


Assuntos
Bacillus thuringiensis , Pasteuria , Tylenchoidea , Adesinas Bacterianas/genética , Animais , Bacillus thuringiensis/genética , Colágeno/genética , Colágeno/metabolismo , Pasteuria/genética , Filogenia , Esporos Bacterianos/metabolismo , Tylenchoidea/genética
2.
BMC Genomics ; 19(1): 850, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30486772

RESUMO

BACKGROUND: Southern root-knot nematode Meloidogyne incognita (Kofoid and White, 1919), Chitwood, 1949 is a key pest of agricultural crops. Pasteuria penetrans is a hyperparasitic bacterium capable of suppressing the nematode reproduction, and represents a typical coevolved pathogen-hyperparasite system. Attachment of Pasteuria endospores to the cuticle of second-stage nematode juveniles is the first and pivotal step in the bacterial infection. RNA-Seq was used to understand the early transcriptional response of the root-knot nematode at 8 h post Pasteuria endospore attachment. RESULTS: A total of 52,485 transcripts were assembled from the high quality (HQ) reads, out of which 582 transcripts were found differentially expressed in the Pasteuria endospore encumbered J2 s, of which 229 were up-regulated and 353 were down-regulated. Pasteuria infection caused a suppression of the protein synthesis machinery of the nematode. Several of the differentially expressed transcripts were putatively involved in nematode innate immunity, signaling, stress responses, endospore attachment process and post-attachment behavioral modification of the juveniles. The expression profiles of fifteen selected transcripts were validated to be true by the qRT PCR. RNAi based silencing of transcripts coding for fructose bisphosphate aldolase and glucosyl transferase caused a reduction in endospore attachment as compared to the controls, whereas, silencing of aspartic protease and ubiquitin coding transcripts resulted in higher incidence of endospore attachment on the nematode cuticle. CONCLUSIONS: Here we provide evidence of an early transcriptional response by the nematode upon infection by Pasteuria prior to root invasion. We found that adhesion of Pasteuria endospores to the cuticle induced a down-regulated protein response in the nematode. In addition, we show that fructose bisphosphate aldolase, glucosyl transferase, aspartic protease and ubiquitin coding transcripts are involved in modulating the endospore attachment on the nematode cuticle. Our results add new and significant information to the existing knowledge on early molecular interaction between M. incognita and P. penetrans.


Assuntos
Pasteuria/genética , Transcriptoma/genética , Tylenchoidea/genética , Tylenchoidea/microbiologia , Animais , Perfilação da Expressão Gênica , Inativação Gênica , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Esporos Bacterianos/genética
3.
J Nematol ; 50(3): 387-398, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30451422

RESUMO

Neem is a perennial plant of family Meliaceae grown very commonly in India. During a survey in Rajasthan, India; a population of root-knot nematode was found in association with tender neem plants causing yellowing, stunting, and heavy root galling. Inspection of the perineal pattern morphology of the adult females, extracted from the galled roots, primarily led to identification of the species as Meloidogyne indica . Further, detailed morphological and morphometric illustrations of second-stage juveniles, males and females were carried out by light compound and scanning electron microscopy. Gross morphology and measurements were found consistent with the original description of M. indica infecting citrus by Whitehead (1968). The neem population was found to infect and reproduce on citrus. Additionally, evolutionary relationship was deduced by Maximum likelihood method using ITS rRNA, D2D3 expansion segment of 28S rRNA and mitochondrial COI sequences. Phylogenetic analyses based on these sequences showed sufficient divergence of M. indica to be differentiated as a unique species under the genus Meloidogyne .

4.
J Exp Biol ; 218(Pt 5): 778-85, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25617450

RESUMO

Ambient exposure to a short synthetic peptide has enhanced fecundity (number of offspring) in invertebrates and vertebrates, ostensibly by disinhibiting reproduction. In separate experiments, nematodes (Caenorhabditis elegans) and guppy fish (Poecilia reticulata) were exposed via their aqueous environment to a dissolved synthetic hexamer (6mer) peptide, IEPVFT (EPL036), at a concentration of 1 µmol l(-1). In the case of the worms, peptide was added to their aqueous buffer daily throughout the experiment (14 days); for the guppies, peptide administration was on the first 15 alternate days in a 50 week experiment. Fecundity rose by 79% among the worms. The number of descendants of the treated guppies was more than four times that of controls by week 26 (103 versus 25, including 72 juveniles versus 6), with 15.4% more estimated biomass in the test tank in total (i.e. including founders). It was deduced that treated females bred earlier, at a smaller size, and had larger brood sizes. The total number of fish in the control tank had caught up by termination, but biomass continued to lag the test tank. There were no overt signs of toxicity among either the worms or the fish. Bioinformatics has been unilluminating in explaining these results in terms, for example, of mimicry of an endogenous regulator. A mass spectrometric campaign to identify a receptor, using murine brain for expediency, proved inconclusive. Molecular modelling in silico indicated unexpectedly that the hexamer EPL036 might be acting as an antagonist, to pro-fecundity effect; that is, as a blocker of an inhibitor. This suggests that there awaits discovery an evolutionarily conserved reproductive inhibitor and its (anti-fecundity) receptor.


Assuntos
Caenorhabditis elegans/fisiologia , Oligopeptídeos/farmacologia , Poecilia/fisiologia , Sequência de Aminoácidos , Animais , Biomassa , Encéfalo/metabolismo , Simulação por Computador , Feminino , Fertilidade/efeitos dos fármacos , Masculino , Espectrometria de Massas , Camundongos , Receptores de Peptídeos/metabolismo , Reprodução , Especificidade da Espécie
5.
Front Cell Infect Microbiol ; 13: 1296293, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173791

RESUMO

Plant-parasitic nematodes are important economic pests of a range of tropical crops. Strategies for managing these pests have relied on a range of approaches, including crop rotation, the utilization of genetic resistance, cultural techniques, and since the 1950's the use of nematicides. Although nematicides have been hugely successful in controlling nematodes, their toxicity to humans, domestic animals, beneficial organisms, and the environment has raised concerns regarding their use. Alternatives are therefore being sought. The Pasteuria group of bacteria that form endospores has generated much interest among companies wanting to develop microbial biocontrol products. A major challenge in developing these bacteria as biocontrol agents is their host-specificity; one population of the bacterium can attach to and infect one population of plant-parasitic nematode but not another of the same species. Here we will review the mechanism by which infection is initiated with the adhesion of endospores to the nematode cuticle. To understand the genetics of the molecular processes between Pasteuria endospores and the nematode cuticle, the review focuses on the nature of the bacterial adhesins and how they interact with the nematode cuticle receptors by exploiting new insights gained from studies of bacterial infections of Carnorhabditis elegans. A new Velcro-like multiple adhesin model is proposed in which the cuticle surface coat, which has an important role in endospore adhesion, is a complex extracellular matrix containing glycans originating in seam cells. The genes associated with these seam cells appear to have a dual role by retaining some characteristics of stem cells.


Assuntos
Parasitos , Pasteuria , Tylenchoidea , Animais , Humanos , Caenorhabditis elegans , Pasteuria/genética , Tylenchoidea/genética , Tylenchoidea/microbiologia , Bactérias , Esporos Bacterianos/genética , Adesinas Bacterianas
6.
Oecologia ; 170(4): 1053-66, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22622874

RESUMO

European foredunes are almost exclusively colonised by Ammophila arenaria, and both the natural succession and the die-out of this plant have been linked to populations of plant-parasitic nematodes (PPN). The overarching aim of this study was to investigate top-down control processes of PPN in these natural ecosystems through comparative analyses of the diversity and dynamics of PPN and their microbial enemies. Our specific aims were, first, to identify and quantify PPN microbial enemies in European sand dunes; second, to assess their life history traits, their spatial and temporal variation in these ecosystems, and third, to evaluate their control potential of PPN populations. This was done by seasonal sampling of a range of sites and making observations on both the nematode and the microbial enemy communities in rhizosphere sand. Nine different nematode microbial enemies belonging to different functional groups were detected in European sand dunes. Their high diversity in these low productivity ecosystems could both result from or lead to the lack of dominance of a particular nematode genus. The distribution of microbial enemies was spatially and temporally variable, both among and within sampling sites. Obligate parasites, either with low host-specificity or having the ability to form an environmentally resistant propagule, are favoured in these ecosystems and are more frequent and abundant than facultative parasites. Three microbial enemies correlated, either positively or negatively, with PPN population size: Catenaria spp., Hirsutella rhossiliensis and Pasteuria penetrans. Microbial-enemy supported links in the food-web may be involved in the control of PPN populations through indirect effects. The endospore-forming P. penetrans was the most successful top-down control agent, and was implicated in the direct control of Meloidogyne spp. and indirect facilitation of Pratylenchus spp. Overall, our findings suggest strong and diverse top-down control effects on the nematode community in these natural ecosystems.


Assuntos
Nematoides/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Animais , Ecossistema , Europa (Continente) , Interações Hospedeiro-Parasita , Poaceae , Dinâmica Populacional , Dióxido de Silício
7.
PLoS One ; 17(12): e0278049, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36454864

RESUMO

BACKGROUND: Biopurification has been used to disclose an evolutionarily conserved inhibitory reproductive hormone involved in tissue mass determination. A (rat) bioassay-guided physicochemical fractionation using ovine materials yielded via Edman degradation a 14-residue amino acid (aa) sequence. As a 14mer synthetic peptide (EPL001) this displayed antiproliferative and reproduction-modulating activity, while representing only a part of the native polypeptide. Even more unexpectedly, a scrambled-sequence control peptide (EPL030) did likewise. METHODS: Reproduction has been investigated in the nematode Steinernema siamkayai, using a fermentation system supplemented with different concentrations of exogenous hexapeptides. Peptide structure-activity relationships have also been studied using prostate cancer and other mammalian cells in vitro, with peptides in solution or immobilized, and via the use of mammalian assays in vivo and through molecular modelling. RESULTS: Reproduction increased (x3) in the entomopathogenic nematode Steinernema siamkayai after exposure to one synthetic peptide (IEPVFT), while fecundity was reduced (x0.5) after exposure to another (KLKMNG), both effects being dose-dependent. These hexamers are opposite ends of the synthetic peptide KLKMNGKNIEPVFT (EPL030). Bioactivity is unexpected as EPL030 is a control compound, based on a scrambled sequence of the test peptide MKPLTGKVKEFNNI (EPL001). EPL030 and EPL001 are both bioinformatically obscure, having no convincing matches to aa sequences in the protein databases. EPL001 has antiproliferative effects on human prostate cancer cells and rat bone marrow cells in vitro. Intracerebroventricular infusion of EPL001 in sheep was associated with elevated growth hormone in peripheral blood and reduced prolactin. The highly dissimilar EPL001 and EPL030 nonetheless have the foregoing biological effects in common in mammalian systems, while being divergently pro- and anti-fecundity respectively in the nematode Caenorhabditis elegans. Peptides up to a 20mer have also been shown to inhibit the proliferation of human cancer and other mammalian cells in vitro, with reproductive upregulation demonstrated previously in fish and frogs, as well as nematodes. EPL001 encodes the sheep neuroendocrine prohormone secretogranin II (sSgII), as deduced on the basis of immunoprecipitation using an anti-EPL001 antibody, with bespoke bioinformatics. Six sSgII residues are key to EPL001's bioactivity: MKPLTGKVKEFNNI. A stereospecific bimodular tri-residue signature is described involving simultaneous accessibility for binding of the side chains of two specific trios of amino acids, MKP & VFN. An evolutionarily conserved receptor is conceptualised having dimeric binding sites, each with ligand-matching bimodular stereocentres. The bioactivity of the 14mer control peptide EPL030 and its hexapeptide progeny is due to the fortuitous assembly of subsets of the novel hormonal motif, MKPVFN, a default reproductive and tissue-building OFF signal.


Assuntos
Neoplasias da Próstata , Rabditídios , Humanos , Masculino , Animais , Ovinos , Ratos , Reprodução , Mamíferos , Caenorhabditis elegans , Hormônios
8.
Appl Environ Microbiol ; 77(18): 6388-94, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21803895

RESUMO

Protein-encoding and 16S rRNA genes of Pasteuria penetrans populations from a wide range of geographic locations were examined. Most interpopulation single nucleotide polymorphisms (SNPs) were detected in the 16S rRNA gene. However, in order to fully resolve all populations, these were supplemented with SNPs from protein-encoding genes in a multilocus SNP typing approach. Examination of individual 16S rRNA gene sequences revealed the occurrence of "cryptic" SNPs which were not present in the consensus sequences of any P. penetrans population. Additionally, hierarchical cluster analysis separated P. penetrans 16S rRNA gene clones into four groups, and one of which contained sequences from the most highly passaged population, demonstrating that it is possible to manipulate the population structure of this fastidious bacterium. The other groups were made from representatives of the other populations in various proportions. Comparison of sequences among three Pasteuria species, namely, P. penetrans, P. hartismeri, and P. ramosa, showed that the protein-encoding genes provided greater discrimination than the 16S rRNA gene. From these findings, we have developed a toolbox for the discrimination of Pasteuria at both the inter- and intraspecies levels. We also provide a model to monitor genetic variation in other obligate hyperparasites and difficult-to-culture microorganisms.


Assuntos
Marcadores Genéticos , Invertebrados/microbiologia , Pasteuria/classificação , Pasteuria/isolamento & purificação , Polimorfismo de Nucleotídeo Único , Animais , Proteínas de Bactérias/genética , Análise por Conglomerados , Genótipo , Pasteuria/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
9.
Plants (Basel) ; 10(7)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34371559

RESUMO

Soils and plant root rhizospheres have diverse microorganism profiles. Components of this naturally occurring microbiome, arbuscular mycorrhizal (AM) fungi and plant growth promoting rhizobacteria (PGPR), may be beneficial to plant growth. Supplementary application to host plants of AM fungi and PGPR either as single species or multiple species inoculants has the potential to enhance this symbiotic relationship further. Single species interactions have been described; the nature of multi-species tripartite relationships between AM fungi, PGPR and the host plant require further scrutiny. The impact of select Bacilli spp. rhizobacteria and the AM fungus Rhizophagus intraradices as both single and combined inoculations (PGPR[i] and AMF[i]) within field extracted arable soils of two tillage treatments, conventional soil inversion (CT) and zero tillage (ZT) at winter wheat growth stages GS30 and GS39 have been conducted. The naturally occurring soil borne species (PGPR[s] and AMF[s]) have been determined by qPCR analysis. Significant differences (p < 0.05) were evident between inocula treatments and the method of seedbed preparation. A positive impact on wheat plant growth was noted for B. amyloliquefaciens applied as both a single inoculant (PGPR[i]) and in combination with R. intraradices (PGPR[i] + AMF[i]); however, the two treatments did not differ significantly from each other. The findings are discussed in the context of the inocula applied and the naturally occurring soil borne PGPR[s] present in the field extracted soil under each method of tillage.

10.
Access Microbiol ; 2(2): acmi000083, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34568751

RESUMO

Arbuscular mycorrhizal (AM) fungi are one of the most common fungal organisms to exist in symbiosis with terrestrial plants, facilitating the growth and maintenance of arable crops. Wheat has been studied extensively for AM fungal symbiosis using the carcinogen trypan blue as the identifying stain for fungal components, namely arbuscles, vesicles and hyphal structures. The present study uses Sheaffer blue ink with a lower risk as an alternative to this carcinogenic stain. Justification for this is determined by stained wheat root sections (n=120), with statistically significant increases in the observed abundance of intracellular root cortical fungal structures stained with Sheaffer blue ink compared to trypan blue for both Zulu (P=0.003) and Siskin (P=0.0003) varieties of winter wheat. This new alternative combines an improved quantification of intracellular fungal components with a lower hazard risk at a lower cost.

11.
Microorganisms ; 8(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207834

RESUMO

Arbuscular mycorrhizal (AM) fungi establish close interactions with host plants, an estimated 80% of vascular plant species. The host plant receives additional soil bound nutrients that would otherwise not be available. Other components of the microbiome, such as rhizobacteria, may influence interactions between AM fungi and the host plant. Within a commercial arable crop selected rhizobacteria in combination with AM fungi may benefit crop yields. The precise nature of interactions between rhizobacteria and AM fungi in a symbiotic relationship overall requires greater understanding. The present study aims to assess this relationship by quantifying: (1) AM fungal intracellular root structures (arbuscules) and soil glomalin as an indicator of AM fungal growth; and (2) root length and tiller number as a measure of crop growth, in response to inoculation with one of three species of Bacillus: B. amyloliquefaciences, B. pumilis, or B. subtilis. The influence of soil management, conventional (CT) or zero tillage (ZT) was a further variable evaluated. A significant (p < 0.0001) species-specific impact on the number of quantifiable AM fungal arbuscules was observed. The inoculation of winter wheat (Triticum aestivum) with B. amyloliquefaciences had a positive impact on AM fungal symbiosis, as indicated by an average of 3226 arbuscules per centimetre of root tissue. Bacillus subtilis increased root length significantly (p < 0.01) but decreased fungal symbiosis (p < 0.01). The inoculation of field soils altered the concentration of glomalin, an indicator of AM fungal growth, significantly (p < 0.00001) for each tillage treatment. The greatest increase was associated with B. amyloliquefaciences for both CT (p < 0.0001) and ZT (p < 0.00001). Bacillus subtilis reduced measured glomalin significantly in both tillage treatments (p < 0.0001 and p < 0.00001 for CT and ZT respectively). The interaction between rhizobacteria and AM fungi is variable, being beneficial or detrimental depending on species. This relationship was evident in both tillage treatments and has important implications for maximizing symbiosis in the crop plant-microbiome present in agricultural systems.

12.
Front Plant Sci ; 11: 763, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582268

RESUMO

Phytonematodes are globally important functional components of the belowground ecology in both natural and agricultural soils; they are a diverse group of which some species are economically important pests, and environmentally benign control strategies are being sought to control them. Using eco-evolutionary theory, we test the hypothesis that root-exudates of host plants will increase the ability of a hyperparasitic bacteria, Pasteuria penetrans and other closely related bacteria, to infect their homologous pest nematodes, whereas non-host root exudates will not. Plant root-exudates from good hosts, poor hosts and non-hosts were characterized by gas chromatography-mass spectrometry (GC/MS) and we explore their interaction on the attachment of the hyperparasitic bacterial endospores to homologous and heterologous pest nematode cuticles. Although GC/MS did not identify any individual compounds as responsible for changes in cuticle susceptibility to endospore adhesion, standardized spore binding assays showed that Pasteuria endospore adhesion decreased with nematode age, and that infective juveniles pre-treated with homologous host root-exudates reduced the aging process and increased attachment of endospores to the nematode cuticle, whereas non-host root-exudates did not. We develop a working model in which plant root exudates manipulate the nematode cuticle aging process, and thereby, through increased bacterial endospore attachment, increase bacterial infection of pest nematodes. This we suggest would lead to a reduction of plant-parasitic nematode burden on the roots and increases plant fitness. Therefore, by the judicious manipulation of environmental factors produced by the plant root and by careful crop rotation this knowledge can help in the development of environmentally benign control strategies.

13.
Adv Parasitol ; 68: 211-45, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19289196

RESUMO

Pasteuria penetrans is an endospore-forming bacterium, which is a hyperparasite of root-knot nematodes Meloidogyne spp. that are economically important pests of a wide range of crops. The life cycle of the bacterium and nematode are described with emphasis on the bacterium's potential as a biocontrol agent. Two aspects that currently prohibit the commercial development of the bacterium as a biocontrol agent are the inability to culture it outside its host and its host specificity. Vegetative growth of the bacterium is possible in vitro; however, getting the vegetative stages of the bacterium to enter sporogenesis has been problematic. Insights from genomic survey sequences regarding the role of cation concentration and the phosphorylation of Spo0F have proved useful in inducing vegetative bacteria to sporulate. Similarly, genomic data have also proved useful in understanding the attachment of endospores to the cuticle of infective nematode juveniles, and a Velcro-like model of spore attachment is proposed that involves collagen-like fibres on the surface of the endospore interacting with mucins on the nematode cuticle. Ecological studies of the interactions between Daphnia and Pasteuria ramosa are examined and similarities are drawn between the co-evolution of virulence in the Daphnia system and that of plant-parasitic nematodes.


Assuntos
Bactérias/metabolismo , Doenças das Plantas/parasitologia , Plantas/parasitologia , Tylenchoidea/microbiologia , Animais , Bactérias/genética , Evolução Biológica , Daphnia/microbiologia , Fucose , Regulação Bacteriana da Expressão Gênica/fisiologia , Genoma Bacteriano , Genômica , Interações Hospedeiro-Parasita , Mimetismo Molecular , Controle Biológico de Vetores , Raízes de Plantas/parasitologia , Polimorfismo Genético , Tylenchoidea/fisiologia
14.
FEMS Microbiol Ecol ; 95(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30380051

RESUMO

Pasteuria spp. belong to a group of genetically diverse endospore-forming bacteria (phylum: Firmicutes) that are known to parasitize plant-parasitic nematodes and water fleas (Daphnia spp.). Collagen-like fibres form the nap on the surface of endospores and the genes encoding these sequences have been hypothesised to be involved in the adhesion of the endospores of Pasteuria spp. to their hosts. We report a group of 17 unique collagen-like genes putatively encoded by Pasteuria penetrans (strain: Res148) that formed five different phylogenetic clusters and suggest that collagen-like proteins are an important source of genetic diversity in animal pathogenic Firmicutes including Pasteuria. Additionally, and unexpectedly, we identified a putative collagen-like sequence which had a very different sequence structure to the other collagen-like proteins but was similar to the protein sequences in Megaviruses that are involved in host-parasite interactions. We, therefore, suggest that these diverse endospore surface proteins in Pasteuria are involved in biological functions, such as cellular adhesion; however, they are not of monophyletic origin and were possibly obtained de novo by mutation or possibly through selection acting upon several historic horizontal gene transfer events.


Assuntos
Adesivos/metabolismo , Proteínas de Bactérias/genética , Colágeno/genética , Pasteuria/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Colágeno/química , Colágeno/metabolismo , Pasteuria/química , Pasteuria/classificação , Pasteuria/metabolismo , Filogenia , Alinhamento de Sequência , Esporos Bacterianos/química , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo
15.
Front Plant Sci ; 10: 1763, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32063916

RESUMO

Pasteuria spp. are endospore forming bacteria which act as natural antagonists to many of the most economically significant plant parasitic nematodes (PPNs). Highly species-specific nematode suppression may be observed in soils containing a sufficiently high density of Pasteuria spp. spores. This suppression is enacted by the bacteria via inhibition of root invasion and sterilization of the nematode host. Molecular methods for the detection of Pasteuria spp. from environmental DNA (eDNA) have been described; however, these methods are limited in both scale and in depth. We report the use of small subunit rRNA gene metabarcoding to profile Pasteuria spp. and nematode communities in parallel. We have investigated Pasteuria spp. population structure in Scottish soils using eDNA from two sources: soil extracted DNA from the second National Soil Inventory of Scotland (NSIS2); and nematode extracted DNA collected from farms in the East Scotland Farm Network (ESFN). We compared the Pasteuria spp. community culture to both nematode community structure and the physiochemical properties of soils. Our results indicate that Pasteuria spp. populations in Scottish soils are broadly dominated by two sequence variants. The first of these aligns with high identity to Pasteuria hartismeri, a species first described parasitizing Meloidogyne ardenensis, a nematode parasite of woody and perennial plants in northern Europe. The second aligns with a Pasteuria-like sequence which was first recovered from a farm near Edinburgh which was found to contain bacterial feeding nematodes and Pratylenchus spp. encumbered by Pasteuria spp. endospores. Further, soil carbon, moisture, bulk density, and pH showed a strong correlation with the Pasteuria spp. community composition. These results indicate that metabarcoding is appropriate for the sensitive, specific, and semi-quantitative profiling of Pasteuria species from eDNA.

16.
Mol Plant Pathol ; 19(11): 2370-2383, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30011135

RESUMO

Mucins are highly glycosylated polypeptides involved in many host-parasite interactions, but their function in plant-parasitic nematodes is still unknown. In this study, a mucin-like gene was cloned from Meloidogyne incognita (Mi-muc-1, 1125 bp) and characterized. The protein was found to be rich in serine and threonine with numerous O-glycosylation sites in the sequence. Quantitative real-time polymerase chain reaction (qRT-PCR) showed the highest expression in the adult female and in situ hybridization revealed the localization of Mi-muc-1 mRNA expression in the tail area in the region of the phasmid. Knockdown of Mi-muc-1 revealed a dual role: (1) immunologically, there was a significant decrease in attachment of Pasteuria penetrans endospores and a reduction in binding assays with human red blood cells (RBCs), suggesting that Mi-MUC-1 is a glycoprotein present on the surface coat of infective second-stage juveniles (J2s) and is involved in cellular adhesion to the cuticle of infective J2s; pretreatment of J2s with different carbohydrates indicated that the RBCs bind to J2 cuticle receptors different from those involved in the interaction of Pasteuria endospores with Mi-MUC-1; (2) the long-term effect of RNA interference (RNAi)-mediated knockdown of Mi-muc-1 led to a significant reduction in nematode fecundity, suggesting a possible function for this mucin as a mediator in the interaction between the nematode and the host plant.


Assuntos
Técnicas de Silenciamento de Genes , Mucinas/genética , Pasteuria/fisiologia , Esporos Bacterianos/fisiologia , Tylenchoidea/genética , Tylenchoidea/microbiologia , Animais , Carboidratos/farmacologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Feminino , Fertilidade/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Mucinas/metabolismo , Parasitos/efeitos dos fármacos , Tylenchoidea/efeitos dos fármacos , Tylenchoidea/crescimento & desenvolvimento
17.
Front Microbiol ; 8: 2122, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209280

RESUMO

Root-knot nematode (RKN) Meloidogyne incognita is an economically important pest of crops. Pasteuria penetrans, is a nematode hyperparasitic bacterium capable of suppressing the reproduction of RKN and thereby useful for its management. Secreted fatty acid and retinol-binding proteins are unique in nematodes and are engaged in nutrient acquisition, development and reproduction; they are also a component of the nematode cuticle and thought to be involved in the interface between hosts and parasites. Attachment of endospores to the cuticle of second stage juveniles of RKN is the primary step of infection and several factors have been identified to facilitate attachment. In this study, the full length of Mi-far-1 (573 bp) was cloned from M. incognita and characterized. Analysis revealed that the Mi-far-1 was rich in α-helix structure, contained a predicted consensus casein kinase II phosphorylation site and a glycosylation site. Quantitative PCR showed the highest expression in the fourth stage juveniles and in situ hybridization revealed the presence of Mi-far-1 mRNA in the hypodermis below the cuticle. Single copy insertion pattern of Mi-far-1 in M. incognita genome was detected by Southern blotting. Knockdown of Mi-far-1 showed significantly increased attachment of P. penetrans' endospores on juvenile cuticle surface and also affected host finding, root infection and nematode fecundity.

18.
World Neurosurg ; 102: 695.e7-695.e10, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28385656

RESUMO

BACKGROUND: Intracranial silicone migration is a rare complication of ocular silicone oil endotamponade and may resemble intraventricular hemorrhage. The etiology of the phenomenon is challenging to understand. CASE DESCRIPTION: In an effort to shed light on this phenomenon, we report a case of a 67-year-old woman with ocular silicone oil endotamponade on the left eye due to retinal detachment who presented with headache to the emergency department. The imaging work-up revealed intraventricular silicone oil migration. CONCLUSIONS: The literature is reviewed through the perspective of pathophysiology. The migration of intraocular silicone oil into the ventricular system provides both an important complication for clinicians to be aware of, as well as a paradigm reminding us that cerebrospinal fluid spaces may have more extensive communications with other body compartments than previously thought.


Assuntos
Sistema Nervoso Central , Hemorragia Cerebral/diagnóstico , Corpos Estranhos no Olho/diagnóstico , Migração de Corpo Estranho/diagnóstico , Óleos de Silicone , Idoso , Diagnóstico Diferencial , Tamponamento Interno/métodos , Feminino , Transtornos da Cefaleia/etiologia , Humanos , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X
19.
Trends Biotechnol ; 24(2): 57-61, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16380180

RESUMO

In the wake of public distrust regarding biotechnology, it has been suggested that the debate should be moved "upstream", whereby the public help to set research priorities. Although many scientists see this as an illogical reaction to a loss of faith in science, we argue that the boundaries between science and its technological applications have become blurred and this produces conflicts of interests that have led to this crisis of trust. Furthermore, this distrust is also a crisis in governance that calls for a new open and democratic approach to scientific research. We propose that the concept of Scientific Citizenship, based on good governance, will help to restore public trust and bridge the gap between science and the society that it serves. Integral to this is the suggestion that the governance of science forms part of the training for scientists.


Assuntos
Biotecnologia/organização & administração , Opinião Pública , Biotecnologia/ética , Biotecnologia/tendências , Ética Profissional , Responsabilidade Social
20.
FEMS Microbiol Ecol ; 58(3): 593-600, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17118000

RESUMO

The Pasteuria group of endospore-forming bacteria has been studied as a biocontrol agent of plant-parasitic nematodes. Techniques have been developed for its detection and quantification in soil samples, and these mainly focus on observations of endospore attachment to nematodes. Characterization of Pasteuria populations has recently been performed with DNA-based techniques, which usually require the extraction of large numbers of spores. We describe a simple immunological method for the quantification and characterization of Pasteuria populations. Bayesian statistics were used to determine an extraction efficiency of 43% and a threshold of detection of 210 endospores g(-1) sand. This provided a robust means of estimating numbers of endospores in small-volume samples from a natural system. Based on visual assessment of endospore fluorescence, a quantitative method was developed to characterize endospore populations, which were shown to vary according to their host.


Assuntos
Bacillus , Bactérias Formadoras de Endosporo , Imunofluorescência/métodos , Esporos Bacterianos/isolamento & purificação , Anticorpos , Especificidade de Anticorpos , Teorema de Bayes , Dióxido de Silício , Microbiologia do Solo , Esporos Bacterianos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA