Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
AMIA Annu Symp Proc ; 2022: 319-328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37128436

RESUMO

Patient representation learning methods create rich representations of complex data and have potential to further advance the development of computational phenotypes (CP). Currently, these methods are either applied to small predefined concept sets or all available patient data, limiting the potential for novel discovery and reducing the explainability of the resulting representations. We report on an extensive, data-driven characterization of the utility of patient representation learning methods for the purpose of CP development or automatization. We conducted ablation studies to examine the impact of patient representations, built using data from different combinations of data types and sampling windows on rare disease classification. We demonstrated that the data type and sampling window directly impact classification and clustering performance, and these results differ by rare disease group. Our results, although preliminary, exemplify the importance of and need for data-driven characterization in patient representation-based CP development pipelines.


Assuntos
Aprendizado de Máquina , Doenças Raras , Humanos , Fenótipo
2.
J Am Med Inform Assoc ; 29(4): 609-618, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34590684

RESUMO

OBJECTIVE: In response to COVID-19, the informatics community united to aggregate as much clinical data as possible to characterize this new disease and reduce its impact through collaborative analytics. The National COVID Cohort Collaborative (N3C) is now the largest publicly available HIPAA limited dataset in US history with over 6.4 million patients and is a testament to a partnership of over 100 organizations. MATERIALS AND METHODS: We developed a pipeline for ingesting, harmonizing, and centralizing data from 56 contributing data partners using 4 federated Common Data Models. N3C data quality (DQ) review involves both automated and manual procedures. In the process, several DQ heuristics were discovered in our centralized context, both within the pipeline and during downstream project-based analysis. Feedback to the sites led to many local and centralized DQ improvements. RESULTS: Beyond well-recognized DQ findings, we discovered 15 heuristics relating to source Common Data Model conformance, demographics, COVID tests, conditions, encounters, measurements, observations, coding completeness, and fitness for use. Of 56 sites, 37 sites (66%) demonstrated issues through these heuristics. These 37 sites demonstrated improvement after receiving feedback. DISCUSSION: We encountered site-to-site differences in DQ which would have been challenging to discover using federated checks alone. We have demonstrated that centralized DQ benchmarking reveals unique opportunities for DQ improvement that will support improved research analytics locally and in aggregate. CONCLUSION: By combining rapid, continual assessment of DQ with a large volume of multisite data, it is possible to support more nuanced scientific questions with the scale and rigor that they require.


Assuntos
COVID-19 , Estudos de Coortes , Confiabilidade dos Dados , Health Insurance Portability and Accountability Act , Humanos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA