Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 286(39): 33999-4006, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21835915

RESUMO

Glycogen synthase is a rate-limiting enzyme in the biosynthesis of glycogen and has an essential role in glucose homeostasis. The three-dimensional structures of yeast glycogen synthase (Gsy2p) complexed with maltooctaose identified four conserved maltodextrin-binding sites distributed across the surface of the enzyme. Site-1 is positioned on the N-terminal domain, site-2 and site-3 are present on the C-terminal domain, and site-4 is located in an interdomain cleft adjacent to the active site. Mutation of these surface sites decreased glycogen binding and catalytic efficiency toward glycogen. Mutations within site-1 and site-2 reduced the V(max)/S(0.5) for glycogen by 40- and 70-fold, respectively. Combined mutation of site-1 and site-2 decreased the V(max)/S(0.5) for glycogen by >3000-fold. Consistent with the in vitro data, glycogen accumulation in glycogen synthase-deficient yeast cells (Δgsy1-gsy2) transformed with the site-1, site-2, combined site-1/site-2, or site-4 mutant form of Gsy2p was decreased by up to 40-fold. In contrast to the glycogen results, the ability to utilize maltooctaose as an in vitro substrate was unaffected in the site-2 mutant, moderately affected in the site-1 mutant, and almost completely abolished in the site-4 mutant. These data show that the ability to utilize maltooctaose as a substrate can be independent of the ability to utilize glycogen. Our data support the hypothesis that site-1 and site-2 provide a "toehold mechanism," keeping glycogen synthase tightly associated with the glycogen particle, whereas site-4 is more closely associated with positioning of the nonreducing end during catalysis.


Assuntos
Glicogênio Sintase/química , Glicogênio/química , Oligossacarídeos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Sítios de Ligação , Glicogênio/genética , Glicogênio/metabolismo , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Mutação , Oligossacarídeos/genética , Oligossacarídeos/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Can J Microbiol ; 56(5): 408-20, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20555403

RESUMO

The budding yeast, Saccharomyces cerevisiae, accumulates the storage polysaccharide glycogen in response to nutrient limitation. Glycogen synthase, the major form of which is encoded by the GSY2 gene, catalyzes the key regulated step in glycogen storage. Here, we utilized Gsy2p fusions to green fluorescent protein (GFP) to determine where glycogen synthase was located within cells. We demonstrated that the localization pattern of Gsy2-GFP depended upon the glycogen content of the cell. When glycogen was abundant, Gsy2-GFP was found uniformly throughout the cytoplasm, but under low glycogen conditions, Gsy2-GFP localized to discrete spots within cells. Gsy2p is known to bind to glycogen, and we propose that the subcellular distribution of Gsy2-GFP reflects the distribution of glycogen particles. In the absence of glycogen, Gsy2p translocates into the nucleus. We hypothesize that Gsy2p is normally retained in the cytoplasm through its interaction with glycogen particles. When glycogen levels are reduced, Gsy2p loses this anchor and can traffic into the nucleus.


Assuntos
Glicogênio Sintase/metabolismo , Glicogênio/metabolismo , Saccharomyces cerevisiae/enzimologia , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Glicogênio Fosforilase/metabolismo , Immunoblotting , Microscopia
3.
Development ; 135(2): 207-16, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18057102

RESUMO

Primordial germ cell development uses programmed cell death to remove abnormal, misplaced or excess cells. Precise control of this process is essential to maintain the continuity and integrity of the germline, and to prevent germ cells from colonizing locations other than the gonads. Through careful analyses of primordial germ cell distribution in developing Drosophila melanogaster embryos, we show that normal germ cell development involves extensive programmed cell death during stages 10-12 of embryogenesis. This germ cell death is mediated by Drosophila p53 (p53). Mutations in p53 result in excess primordial germ cells that are ectopic to the gonads. Initial movements of the germ cells appear normal, and wild-type numbers of germ cells populate the gonads, indicating that p53 is required for germ cell death, but not migration. To our knowledge, this is the first report of a loss-of-function phenotype for Drosophila p53 in a non-sensitized background. The p53 phenotype is remarkably similar to that of outsiders (out) mutants. Here, we show that the out gene encodes a putative monocarboxylate transporter. Mutations in p53 and out show nonallelic noncomplementation. Interestingly, overexpression of p53 in primordial germ cells of out mutant embryos partially suppresses the out germ cell death phenotype, suggesting that p53 functions in germ cells either downstream of out or in a closely linked pathway. These findings inform models in which signaling between p53 and cellular metabolism are integrated to regulate programmed cell death decisions.


Assuntos
Apoptose , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Células Germinativas/citologia , Proteína Supressora de Tumor p53/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Movimento Celular , Mapeamento Cromossômico , Códon sem Sentido , Proteínas de Drosophila/química , Embrião não Mamífero/citologia , Gônadas/citologia , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Ligação Proteica , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA