Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Plant Physiol ; 183(1): 123-136, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139476

RESUMO

The lignin biosynthetic pathway is highly conserved in angiosperms, yet pathway manipulations give rise to a variety of taxon-specific outcomes. Knockout of lignin-associated 4-coumarate:CoA ligases (4CLs) in herbaceous species mainly reduces guaiacyl (G) lignin and enhances cell wall saccharification. Here we show that CRISPR-knockout of 4CL1 in poplar (Populus tremula × alba) preferentially reduced syringyl (S) lignin, with negligible effects on biomass recalcitrance. Concordant with reduced S-lignin was downregulation of ferulate 5-hydroxylases (F5Hs). Lignification was largely sustained by 4CL5, a low-affinity paralog of 4CL1 typically with only minor xylem expression or activity. Levels of caffeate, the preferred substrate of 4CL5, increased in line with significant upregulation of caffeoyl shikimate esterase1 Upregulation of caffeoyl-CoA O-methyltransferase1 and downregulation of F5Hs are consistent with preferential funneling of 4CL5 products toward G-lignin biosynthesis at the expense of S-lignin. Thus, transcriptional and metabolic adaptations to 4CL1-knockout appear to have enabled 4CL5 catalysis at a level sufficient to sustain lignification. Finally, genes involved in sulfur assimilation, the glutathione-ascorbate cycle, and various antioxidant systems were upregulated in the mutants, suggesting cascading responses to perturbed thioesterification in lignin biosynthesis.


Assuntos
Lignina/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Populus/metabolismo , Xilema/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Catálise , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Xilema/genética
2.
Proc Natl Acad Sci U S A ; 114(5): 1195-1200, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096391

RESUMO

As a consequence of their remarkable adaptability, fast growth, and superior wood properties, eucalypt tree plantations have emerged as key renewable feedstocks (over 20 million ha globally) for the production of pulp, paper, bioenergy, and other lignocellulosic products. However, most biomass properties such as growth, wood density, and wood chemistry are complex traits that are hard to improve in long-lived perennials. Systems genetics, a process of harnessing multiple levels of component trait information (e.g., transcript, protein, and metabolite variation) in populations that vary in complex traits, has proven effective for dissecting the genetics and biology of such traits. We have applied a network-based data integration (NBDI) method for a systems-level analysis of genes, processes and pathways underlying biomass and bioenergy-related traits using a segregating Eucalyptus hybrid population. We show that the integrative approach can link biologically meaningful sets of genes to complex traits and at the same time reveal the molecular basis of trait variation. Gene sets identified for related woody biomass traits were found to share regulatory loci, cluster in network neighborhoods, and exhibit enrichment for molecular functions such as xylan metabolism and cell wall development. These findings offer a framework for identifying the molecular underpinnings of complex biomass and bioprocessing-related traits. A more thorough understanding of the molecular basis of plant biomass traits should provide additional opportunities for the establishment of a sustainable bio-based economy.


Assuntos
Biomassa , Eucalyptus/metabolismo , Redes Reguladoras de Genes , Genes de Plantas , Lignina/metabolismo , Redes e Vias Metabólicas/genética , Modelos Genéticos , Carbono/metabolismo , Parede Celular/metabolismo , Mapeamento Cromossômico , Cruzamentos Genéticos , Eucalyptus/genética , Eucalyptus/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Hibridização Genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Madeira/metabolismo
3.
BMC Genomics ; 20(1): 785, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664907

RESUMO

BACKGROUND: The cellular machinery for cell wall synthesis and metabolism is encoded by members of large multi-gene families. Maize is both a genetic model for grass species and a potential source of lignocellulosic biomass from crop residues. Genetic improvement of maize for its utility as a bioenergy feedstock depends on identification of the specific gene family members expressed during secondary wall development in stems. RESULTS: High-throughput sequencing of transcripts expressed in developing rind tissues of stem internodes provided a comprehensive inventory of cell wall-related genes in maize (Zea mays, cultivar B73). Of 1239 of these genes, 854 were expressed among the internodes at ≥95 reads per 20 M, and 693 of them at ≥500 reads per 20 M. Grasses have cell wall compositions distinct from non-commelinid species; only one-quarter of maize cell wall-related genes expressed in stems were putatively orthologous with those of the eudicot Arabidopsis. Using a slope-metric algorithm, five distinct patterns for sub-sets of co-expressed genes were defined across a time course of stem development. For the subset of genes associated with secondary wall formation, fifteen sequence motifs were found in promoter regions. The same members of gene families were often expressed in two maize inbreds, B73 and Mo17, but levels of gene expression between them varied, with 30% of all genes exhibiting at least a 5-fold difference at any stage. Although presence-absence and copy-number variation might account for much of these differences, fold-changes of expression of a CADa and a FLA11 gene were attributed to polymorphisms in promoter response elements. CONCLUSIONS: Large genetic variation in maize as a species precludes the extrapolation of cell wall-related gene expression networks even from one common inbred line to another. Elucidation of genotype-specific expression patterns and their regulatory controls will be needed for association panels of inbreds and landraces to fully exploit genetic variation in maize and other bioenergy grass species.


Assuntos
Parede Celular/genética , Caules de Planta/genética , Transcriptoma , Zea mays/genética , Arabidopsis/genética , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Celulose/biossíntese , Lignina/biossíntese , Família Multigênica , Melhoramento Vegetal , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Regiões Promotoras Genéticas , Xilanos/biossíntese , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Zea mays/ultraestrutura
4.
BMC Genomics ; 20(1): 875, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31747881

RESUMO

BACKGROUND: Populus trichocarpa is an important forest tree species for the generation of lignocellulosic ethanol. Understanding the genomic basis of biomass production and chemical composition of wood is fundamental in supporting genetic improvement programs. Considerable variation has been observed in this species for complex traits related to growth, phenology, ecophysiology and wood chemistry. Those traits are influenced by both polygenic control and environmental effects, and their genome architecture and regulation are only partially understood. Genome wide association studies (GWAS) represent an approach to advance that aim using thousands of single nucleotide polymorphisms (SNPs). Genotyping using exome capture methodologies represent an efficient approach to identify specific functional regions of genomes underlying phenotypic variation. RESULTS: We identified 813 K SNPs, which were utilized for genotyping 461 P. trichocarpa clones, representing 101 provenances collected from Oregon and Washington, and established in California. A GWAS performed on 20 traits, considering single SNP-marker tests identified a variable number of significant SNPs (p-value < 6.1479E-8) in association with diameter, height, leaf carbon and nitrogen contents, and δ15N. The number of significant SNPs ranged from 2 to 220 per trait. Additionally, multiple-marker analyses by sliding-windows tests detected between 6 and 192 significant windows for the analyzed traits. The significant SNPs resided within genes that encode proteins belonging to different functional classes as such protein synthesis, energy/metabolism and DNA/RNA metabolism, among others. CONCLUSIONS: SNP-markers within genes associated with traits of importance for biomass production were detected. They contribute to characterize the genomic architecture of P. trichocarpa biomass required to support the development and application of marker breeding technologies.


Assuntos
Genoma de Planta , Redes e Vias Metabólicas/genética , Populus/genética , Característica Quantitativa Herdável , Madeira/genética , California , Carbono/metabolismo , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Lignina/biossíntese , Metaboloma , Nitrogênio/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Polimorfismo de Nucleotídeo Único , Populus/metabolismo , Sequenciamento do Exoma , Madeira/metabolismo
5.
Plant Biotechnol J ; 16(1): 39-49, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28436149

RESUMO

Sustainable utilization of lignocellulosic perennial grass feedstocks will be enabled by high biomass production and optimized cell wall chemistry for efficient conversion into biofuels. MicroRNAs are regulatory elements that modulate the expression of genes involved in various biological functions in plants, including growth and development. In greenhouse studies, overexpressing a microRNA (miR156) gene in switchgrass had dramatic effects on plant architecture and flowering, which appeared to be driven by transgene expression levels. High expressing lines were extremely dwarfed, whereas low and moderate-expressing lines had higher biomass yields, improved sugar release and delayed flowering. Four lines with moderate or low miR156 overexpression from the prior greenhouse study were selected for a field experiment to assess the relationship between miR156 expression and biomass production over three years. We also analysed important bioenergy feedstock traits such as flowering, disease resistance, cell wall chemistry and biofuel production. Phenotypes of the transgenic lines were inconsistent between the greenhouse and the field as well as among different field growing seasons. One low expressing transgenic line consistently produced more biomass (25%-56%) than the control across all three seasons, which translated to the production of 30% more biofuel per plant during the final season. The other three transgenic lines produced less biomass than the control by the final season, and the two lines with moderate expression levels also exhibited altered disease susceptibilities. Results of this study emphasize the importance of performing multiyear field studies for plants with altered regulatory transgenes that target plant growth and development.


Assuntos
Panicum/genética , Panicum/microbiologia , Plantas Geneticamente Modificadas/genética , Biomassa , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , MicroRNAs/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/microbiologia
6.
Plant Biotechnol J ; 13(5): 636-47, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25400275

RESUMO

Gibberellin 2-oxidases (GA2oxs) are a group of 2-oxoglutarate-dependent dioxygenases that catalyse the deactivation of bioactive GA or its precursors through 2ß-hydroxylation reaction. In this study, putatively novel switchgrass C20 GA2ox genes were identified with the aim of genetically engineering switchgrass for improved architecture and reduced biomass recalcitrance for biofuel. Three C20 GA2ox genes showed differential regulation patterns among tissues including roots, seedlings and reproductive parts. Using a transgenic approach, we showed that overexpression of two C20 GA2ox genes, that is PvGA2ox5 and PvGA2ox9, resulted in characteristic GA-deficient phenotypes with dark-green leaves and modified plant architecture. The changes in plant morphology appeared to be associated with GA2ox transcript abundance. Exogenous application of GA rescued the GA-deficient phenotypes in transgenic lines. Transgenic semi-dwarf lines displayed increased tillering and reduced lignin content, and the syringyl/guaiacyl lignin monomer ratio accompanied by the reduced expression of lignin biosynthetic genes compared to nontransgenic plants. A moderate increase in the level of glucose release in these transgenic lines might be attributed to reduced biomass recalcitrance as a result of reduced lignin content and lignin composition. Our results suggest that overexpression of GA2ox genes in switchgrass is a feasible strategy to improve plant architecture and reduce biomass recalcitrance for biofuel.


Assuntos
Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Oxigenases de Função Mista/genética , Panicum/enzimologia , Biocombustíveis , Biomassa , Regulação Enzimológica da Expressão Gênica , Ácidos Cetoglutáricos/metabolismo , Oxigenases de Função Mista/metabolismo , Panicum/genética , Panicum/crescimento & desenvolvimento , Fenótipo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plântula/enzimologia , Plântula/genética , Plântula/crescimento & desenvolvimento
7.
Plant Physiol ; 165(4): 1475-1487, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24972714

RESUMO

Biotechnological approaches to reduce or modify lignin in biomass crops are predicated on the assumption that it is the principal determinant of the recalcitrance of biomass to enzymatic digestion for biofuels production. We defined quantitative trait loci (QTL) in the Intermated B73 × Mo17 recombinant inbred maize (Zea mays) population using pyrolysis molecular-beam mass spectrometry to establish stem lignin content and an enzymatic hydrolysis assay to measure glucose and xylose yield. Among five multiyear QTL for lignin abundance, two for 4-vinylphenol abundance, and four for glucose and/or xylose yield, not a single QTL for aromatic abundance and sugar yield was shared. A genome-wide association study for lignin abundance and sugar yield of the 282-member maize association panel provided candidate genes in the 11 QTL of the B73 and Mo17 parents but showed that many other alleles impacting these traits exist among this broader pool of maize genetic diversity. B73 and Mo17 genotypes exhibited large differences in gene expression in developing stem tissues independent of allelic variation. Combining these complementary genetic approaches provides a narrowed list of candidate genes. A cluster of SCARECROW-LIKE9 and SCARECROW-LIKE14 transcription factor genes provides exceptionally strong candidate genes emerging from the genome-wide association study. In addition to these and genes associated with cell wall metabolism, candidates include several other transcription factors associated with vascularization and fiber formation and components of cellular signaling pathways. These results provide new insights and strategies beyond the modification of lignin to enhance yields of biofuels from genetically modified biomass.

8.
Plant Cell Physiol ; 55(9): 1669-78, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25016610

RESUMO

4-Coumarate:CoA ligase (4CL) catalyzes the formation of hydroxycinnamoyl-CoA esters for phenylpropanoid biosynthesis. Phylogenetically distinct Class I and Class II 4CL isoforms occur in angiosperms, and support lignin and non-lignin phenylpropanoid biosynthesis, respectively. In contrast, the few experimentally characterized gymnosperm 4CLs are associated with lignin biosynthesis and belong to the conifer-specific Class III. Here we report a new Pinus taeda isoform Pinta4CL3 that is phylogenetically more closely related to Class II angiosperm 4CLs than to Class III Pinta4CL1. Like angiosperm Class II 4CLs, Pinta4CL3 transcript levels were detected in foliar and root tissues but were absent in xylem, and recombinant Pinta4CL3 exhibited a substrate preference for 4-coumaric acid. Constitutive expression of Pinta4CL3 in transgenic Populus led to significant increases of hydroxycinnamoyl-quinate esters at the expense of hydroxycinnamoyl-glucose esters in green tissues. In particular, large increases of cinnamoyl-quinate in transgenic leaves suggested in vivo utilization of cinnamic acid by Pinta4CL3. Lignin was unaffected in transgenic Populus, consistent with Pinta4CL3 involvement in biosynthesis of non-structural phenylpropanoids. We discuss the in vivo cinnamic acid utilization activity of Pinta4CL3 and its adaptive significance in conifer defense. Together with phylogenetic inference, our data support an ancient origin of Class II 4CLs that pre-dates the angiosperm-gymnosperm split.


Assuntos
Coenzima A Ligases/metabolismo , Regulação da Expressão Gênica de Plantas , Pinus/enzimologia , Populus/enzimologia , Propanóis/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Coenzima A Ligases/genética , Ácidos Cumáricos/metabolismo , Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Isoenzimas , Lignina/metabolismo , Dados de Sequência Molecular , Filogenia , Pinus/genética , Folhas de Planta/química , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Populus/química , Populus/genética , Propionatos , Análise de Sequência de DNA , Xilema/química , Xilema/enzimologia , Xilema/genética
9.
Plant Biotechnol J ; 12(7): 914-24, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24751162

RESUMO

Switchgrass (Panicum virgatum L.) is a leading candidate for a dedicated lignocellulosic biofuel feedstock owing to its high biomass production, wide adaptation and low agronomic input requirements. Lignin in cell walls of switchgrass, and other lignocellulosic feedstocks, severely limits the accessibility of cell wall carbohydrates to enzymatic breakdown into fermentable sugars and subsequently biofuels. Low-lignin transgenic switchgrass plants produced by the down-regulation of caffeic acid O-methyltransferase (COMT), a lignin biosynthetic enzyme, were analysed in the field for two growing seasons. COMT transcript abundance, lignin content and the syringyl/guaiacyl lignin monomer ratio were consistently lower in the COMT-down-regulated plants throughout the duration of the field trial. In general, analyses with fully established plants harvested during the second growing season produced results that were similar to those observed in previous greenhouse studies with these plants. Sugar release was improved by up to 34% and ethanol yield by up to 28% in the transgenic lines relative to controls. Additionally, these results were obtained using senesced plant material harvested at the end of the growing season, compared with the young, green tissue that was used in the greenhouse experiments. Another important finding was that transgenic plants were not more susceptible to rust (Puccinia emaculata). The results of this study suggest that lignin down-regulation in switchgrass can confer real-world improvements in biofuel yield without negative consequences to biomass yield or disease susceptibility.


Assuntos
Biocombustíveis , Lignina/biossíntese , Panicum/genética , Biomassa , Parede Celular/química , Celulose/química , Resistência à Doença/genética , Regulação para Baixo , Etanol/química , Regulação da Expressão Gênica de Plantas , Lignina/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Panicum/crescimento & desenvolvimento , Panicum/microbiologia , Plantas Geneticamente Modificadas/metabolismo , RNA Mensageiro/metabolismo
10.
Proc Natl Acad Sci U S A ; 108(15): 6300-5, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21444820

RESUMO

The primary obstacle to producing renewable fuels from lignocellulosic biomass is a plant's recalcitrance to releasing sugars bound in the cell wall. From a sample set of wood cores representing 1,100 individual undomesticated Populus trichocarpa trees, 47 extreme phenotypes were selected across measured lignin content and ratio of syringyl and guaiacyl units (S/G ratio). This subset was tested for total sugar release through enzymatic hydrolysis alone as well as through combined hot-water pretreatment and enzymatic hydrolysis using a high-throughput screening method. The total amount of glucan and xylan released varied widely among samples, with total sugar yields of up to 92% of the theoretical maximum. A strong negative correlation between sugar release and lignin content was only found for pretreated samples with an S/G ratio < 2.0. For higher S/G ratios, sugar release was generally higher, and the negative influence of lignin was less pronounced. When examined separately, only glucose release was correlated with lignin content and S/G ratio in this manner, whereas xylose release depended on the S/G ratio alone. For enzymatic hydrolysis without pretreatment, sugar release increased significantly with decreasing lignin content below 20%, irrespective of the S/G ratio. Furthermore, certain samples featuring average lignin content and S/G ratios exhibited exceptional sugar release. These facts suggest that factors beyond lignin and S/G ratio influence recalcitrance to sugar release and point to a critical need for deeper understanding of cell-wall structure before plants can be rationally engineered for reduced recalcitrance and efficient biofuels production.


Assuntos
Glucanos/metabolismo , Lignina/análise , Populus/química , Populus/metabolismo , Xilanos/metabolismo , Metabolismo dos Carboidratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA