Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Phys Chem Chem Phys ; 25(35): 24069-24080, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37655458

RESUMO

The design of miniaturized hemodialysis devices, such as wearable artificial kidneys, requires regeneration of the dialysate stream to remove uremic toxins from water. Adsorption has the potential to capture such molecules, but conventional adsorbents have low urea/water selectivity. In this work, we performed a comprehensive computational study of 560 porous crystalline adsorbents comprising mainly covalent organic frameworks (COFs), as well as some siliceous zeolites, metal organic frameworks (MOFs) and graphitic materials. An initial screening using Widom insertion method assessed the excess chemical potential at infinite dilution for water and urea at 310 K, providing information on the strength and selectivity of urea adsorption. From such analysis it was observed that urea adsorption and urea/water selectivity increased strongly with fluorine content in COFs, while other compositional or structural parameters did not correlate with material performance. Two COFs, namely COF-F6 and Tf-DHzDPr were explored further through Molecular Dynamics simulations. The results agree with those of the Widom method and allow to identify the urea binding sites, the contribution of electrostatic and van der Waals interactions, and the position of preferential urea-urea and urea-framework interactions. This study paves the way for a well-informed experimental campaign and accelerates the development of novel sorbents for urea removal, ultimately advancing on the path to achieve wearable artificial kidneys.

2.
J Chem Phys ; 159(5)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37530114

RESUMO

The Robeson bound is a theoretical limit that applies to kinetics-driven membrane separations of gas mixtures. However, this bound does not apply to sorption-driven membrane processes such as CO2/N2 separation, which lacks a theoretical explanation. As a result, we are uncertain about the factors that control the limiting behavior of sorption-driven separations. To address this issue, we employed a simple lattice model and dynamic mean field theory to examine the transport properties of disordered model structures, isolating sorption effects from purely kinetic effects. Our findings indicate that transport effects play a crucial role in sorption-driven processes, and perm-selectivity is consistently lower than sorption selectivity, which is an unattainable limit. We used basic geometric fragments of the structure to explain how transport effects emerge and manifest themselves in sorption-driven processes.

3.
J Phys Chem B ; 128(11): 2799-2810, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38452257

RESUMO

The modeling of the barrier properties of semicrystalline polymers has gained interest following the possible application of such materials as protective liners for the safe supply of pressurized hydrogen. The mass transport in such systems is intimately related to the complex intercalation between the crystal and amorphous phases, which was approached in this work through an all-atom representation of high-density polyethylene structures with a tailored fraction of amorphous-crystalline connections (tie-chains). Simulations of the polymer pressure-volume-temperature data and hydrogen sorption were performed by means of molecular dynamics and the Widom test particle insertion method. The discretization of the simulation domains of the semicrystalline structures allowed us to obtain profiles of density, degree of order, and gas solubility. The results indicated that the gas sorption in the crystalline regions is negligible and that the confinement of the amorphous phase between crystals induces a significant increase in density and a drop in the sorption capacity, even in the absence of tie-chains. Adding ties between the crystal and the amorphous phase results in further densification, an increase of the lamella tilt angle, and a decrease in the degree of crystallinity and hydrogen sorption coefficient, in agreement with several literature references.

4.
Polymers (Basel) ; 15(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37050418

RESUMO

In this work, we assessed the CO2 and CH4 sorption and transport in copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV), which showed good CO2 capture potential in our previous papers, thanks to their good solubility-selectivity, and are potential biodegradable alternatives to standard membrane-separation materials. Experimental tests were carried out on a commercial material containing 8% of 3-hydroxyvalerate (HV), while molecular modelling was used to screen the performance of the copolymers across the entire composition range by simulating structures with 0%, 8%, 60%, and 100% HV, with the aim to provide a guide for the selection of the membrane material. The polymers were simulated using molecular dynamics (MD) models and validated against experimental density, solubility parameters, and X-ray diffraction. The CO2/CH4 solubility-selectivity predicted by the Widom insertion method is in good agreement with experimental data, while the diffusivity-selectivity obtained via mean square displacement is somewhat overestimated. Overall, simulations indicate promising behaviour for the homopolymer containing 100% of HV. In part 2 of this series of papers, we will investigate the same biomaterials using a macroscopic model for polymers and compare the accuracy and performance of the two approaches.

5.
ACS Appl Mater Interfaces ; 15(23): 28594-28605, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37265075

RESUMO

Fully biobased and biodegradable materials have attracted a growing interest in the food packaging sector as they can help to reduce the negative impact of fossil-based plastics on the environment. Moreover, the addition of functionalities to these materials by introducing active molecules has become an essential requirement to create modern packaging able to extend food's shelf-life while informing the consumer about food quality and freshness. In this study, we present an innovative bioplastic formulation for food packaging based on poly(hydroxybutyrate-co-valerate) (PHBV) and tannins as multifunctional additives. As a proof of concept, PHBV/tannin films were prepared by solvent casting, increasing the tannin content from 1 to 10 per hundred of resin (phr). Formic acid was used to reach a homogeneous distribution of the hydrophilic tannins into hydrophobic PHBV, which is remarkably challenging by using other solvents. Thanks to their well-known properties, the effect of tannins on the antioxidant, UV protection, and gas barrier properties of PHBV was evaluated. Samples containing 5 phr bioadditive revealed the best combination of these properties, also maintaining good transparency. Differential scanning calorimetry (DSC) investigations revealed that films are suitable for application from the fridge to potentially high temperatures for food heating (up to 200 °C). Tensile tests have also shown that Young's modulus (900-1030 MPa) and tensile strength (20 MPa) are comparable with those of the common polymers and biopolymers for packaging. Besides the improvement of the PHBV properties for extending food's shelf-life, it was also observed that PHBV/tannin could colorimetrically detect ammonia vapors, thus making this material potentially applicable as a smart indicator for food spoilage (e.g., detection of fish degradation). The presented outcomes suggest that tannins can add multifunctional properties to a polymeric material, opening up a new strategy to obtain an attractive alternative to petroleum-based plastics for smart food packaging applications.


Assuntos
Poli-Hidroxialcanoatos , Animais , Taninos , Embalagem de Alimentos , Biopolímeros/química , Plásticos
6.
Amyloid ; 30(3): 335-345, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36988111

RESUMO

BACKGROUND: Very small case series of patients with apolipoprotein A1 (ApoA1) amyloidosis are available. METHODS: We described the clinical and echocardiographic characteristics of individuals with the pathogenic APOA1 variant Leu75Pro (p. Leu99Pro), referred for cardiac screening. RESULTS: We enrolled 189 subjects, 54% men, median age 55 years (interquartile range 42-67), 39% with concomitant renal disease and 31% with liver disease. Median left ventricular ejection fraction was 60% (55-66). Overall, these subjects did not show overt diastolic dysfunction nor left ventricular (LV) hypertrophy. Age correlated with interventricular septal (IVS) thickness (r = 0.484), LV mass index (r = 0.459), E/e' (r = 0.501), and right ventricular free wall thickness (r = 0.594) (all p < 0.001). Some individuals displayed red flags for cardiac amyloidosis (CA), and 14% met non-invasive criteria for CA. Twenty-nine subjects died over 5.8 years (4.1-8.0), with 10 deaths for cardiovascular causes. Individuals meeting echocardiographic criteria for CA had a much higher risk of all-cause death (p = 0.009), cardiovascular death (p = 0.001), cardiovascular death or heart failure (HF) hospitalisation (p < 0.001). Subjects with both renal and liver involvement had a more prominent cardiac involvement, and shortest survival. CONCLUSIONS: Subjects with the APOA1 Leu75Pro variant displayed minor echocardiographic signs of cardiac involvement, but 14% met echocardiographic criteria for CA. Subjects with suspected CA had a worse outcome.


Assuntos
Amiloidose , Apolipoproteína A-I , Masculino , Humanos , Pessoa de Meia-Idade , Feminino , Volume Sistólico , Apolipoproteína A-I/genética , Função Ventricular Esquerda , Ecocardiografia , Hipertrofia Ventricular Esquerda/complicações , Amiloidose/patologia
7.
Membranes (Basel) ; 12(2)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35207125

RESUMO

We developed Mixed Matrix Membrane Adsorbers (MMMAs) formed by cellulose acetate and various sorbent particles (activated carbon, zeolites ZSM-5 and clinoptilolite) for the removal of urea, creatinine and uric acid from aqueous solutions, to be used in the regeneration of spent dialysate water from Hemodialysis (HD). This process would allow reducing the disproportionate amount of water consumed and permits the development of closed-loop HD devices, such as wearable artificial kidneys. The strategy of MMMAs is to combine the high permeability of porous membranes with the toxin-capturing ability of embedded particles. The water permeability of the MMMAs ranges between 600 and 1500 L/(h m2 bar). The adsorption of urea, the limiting toxin, can be improved of about nine times with respect to the pure cellulose acetate membrane. Flow experiments demonstrate the feasibility of the process in a real HD therapy session.

8.
Membranes (Basel) ; 12(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36135877

RESUMO

Professor Giulio C. Sarti has provided outstanding contributions to the modelling of fluid sorption and transport in polymeric materials, with a special eye on industrial applications such as membrane separation, due to his Chemical Engineering background. He was the co-creator of innovative theories such as the Non-Equilibrium Theory for Glassy Polymers (NET-GP), a flexible tool to estimate the solubility of pure and mixed fluids in a wide range of polymers, and of the Standard Transport Model (STM) for estimating membrane permeability and selectivity. In this review, inspired by his rigorous and original approach to representing membrane fundamentals, we provide an overview of the most significant and up-to-date modeling tools available to estimate the main properties governing polymeric membranes in fluid separation, namely solubility and diffusivity. The paper is not meant to be comprehensive, but it focuses on those contributions that are most relevant or that show the potential to be relevant in the future. We do not restrict our view to the field of macroscopic modelling, which was the main playground of professor Sarti, but also devote our attention to Molecular and Multiscale Hierarchical Modeling. This work proposes a critical evaluation of the different approaches considered, along with their limitations and potentiality.

9.
Membranes (Basel) ; 11(6)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199842

RESUMO

The transport of H2, He, CO2, O2, CH4, and N2 at three temperatures up to 65 °C was measured in dense, thick composite films formed by amorphous Polysulfone (PSf) and particles of the size-selective zeolitic imidazolate framework 8 (ZIF-8) at loadings up to 16 wt%. The morphological and structural properties of the membranes were analyzed via SEM and density measurement. The addition of ZIF-8 to PSf enhances the H2 and He permeabilities up to 480% with respect to the pure polymer, while the ideal H2/CO2 and He/CO2 selectivities of MMMs reach values up to 30-40% higher than those of pure PSf. The relative permeability and diffusivity enhancements are higher than those obtained in other polymers, such as PPO, with the same amount of filler. The Maxwell-Wagner-Sillars model is able to represent the MMM H2/CO2 separation performance for filler volume fractions below 10%.

10.
Membranes (Basel) ; 11(12)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34940483

RESUMO

Torlon® is a thermally and plasticization-resistant polyamide imide characterized by low gas permeability at room temperature. In this work, we aimed at improving the polymer performance in the thermally-enhanced He/CO2 and H2/CO2 separations, by compounding Torlon® with a highly permeable filler, ZIF-8, to fabricate Mixed Matrix Membranes (MMMs). The effect of filler loading, gas size, and temperature on the MMMs permeability, diffusivity, and selectivity was investigated. The He permeability increased by a factor of 3, while the He/CO2 selectivity decreased by a factor of 2, when adding 25 wt % of ZIF-8 at 65 °C to Torlon®; similar trends were observed for the case of H2. The MMMs permeability and size-selectivity were both enhanced by temperature. The behavior of MMMs is intermediate between the pure polymer and pure filler ones, and can be described with models for composites, indicating that such materials have a good polymer/filler adhesion and their performance could be tailored by acting on the formulation. The behavior observed is in line with previous investigations on MMMs based on glassy polymers and ZIF-8, in similar conditions, and indicates that ZIF-8 can be used as a polymer additive when the permeability is a controlling aspect, with a proper choice of loading and operative temperature.

11.
Membranes (Basel) ; 10(12)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297568

RESUMO

This Special Issue of Membranes provides an updated and comprehensive overview of the state of fundamental knowledge on the fluid sorption and transport in glassy polymers, combining original experimental and modeling works, as well as reviews, prepared by renowned experts [...].

12.
Macromolecules ; 53(10): 3669-3689, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33828339

RESUMO

A simulation strategy encompassing different scales was applied to the systematic study of the effects of CO2 uptake on the properties of atactic polystyrene (aPS) melts. The analysis accounted for the influence of temperature between 450 and 550 K, polymer molecular weights (M w) between 2100 and 31000 g/mol, and CO2 pressures up to 20 MPa on the volumetric, swelling, structural, and dynamic properties of the polymer as well as on the CO2 solubility and diffusivity by performing molecular dynamics (MD) simulations of the system in a fully atomistic representation. A hierarchical scheme was used for the generation of the higher M w polymer systems, which consisted of equilibration at a coarse-grained level of representation through efficient connectivity-altering Monte Carlo simulations, and reverse-mapping back to the atomistic representation, obtaining the configurations used for subsequent MD simulations. Sorption isotherms and associated swelling effects were determined by using an iterative procedure that incorporated a series of MD simulations in the NPT ensemble and the Widom test particle insertion method, while CO2 diffusion coefficients were extracted from long MD runs in the NVE ensemble. Solubility and diffusivity compared favorably with experimental results and with predictions of the Sanchez-Lacombe equation of state, which was reparametrized to capture the M w dependence of polymer properties with greater accuracy. Structural features of the polymer matrix were correctly reproduced by the simulations, and the effects of gas concentration and M w on structure and local dynamics were thoroughly investigated. In the presence of CO2, a significant acceleration of the segmental dynamics of the polymer occurred, more pronouncedly at low M w. The speed-up effect caused by the swelling agent was not limited to the chain ends but affected the whole chain in a similar fashion.

13.
Membranes (Basel) ; 10(4)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230906

RESUMO

In this study, we prepared and characterized composite films formed by amorphous poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and particles of the size-selective Zeolitic Imidazolate Framework 8 (ZIF-8). The aim was to increase the permselectivity properties of pure PPO using readily available materials to enable the possibility to scale-up the technology developed in this work. The preparation protocol established allowed robust membranes with filler loadings as high as 45 wt% to be obtained. The thermal, morphological, and structural properties of the membranes were analyzed via DSC, SEM, TGA, and densitometry. The gas permeability and diffusivity of He, CO2, CH4, and N2 were measured at 35, 50, and 65 °C. The inclusion of ZIF-8 led to a remarkable increase of the gas permeability for all gases, and to a significant decrease of the activation energy of diffusion and permeation. The permeability increased up to +800% at 45 wt% of filler, reaching values of 621 Barrer for He and 449 for CO2 at 35 °C. The ideal size selectivity of the PPO membrane also increased, albeit to a lower extent, and the maximum was reached at a filler loading of 35 wt% (1.5 for He/CO2, 18 for CO2/N2, 17 for CO2/CH4, 27 for He/N2, and 24 for He/CH4). The density of the composite materials followed an additive behavior based on the pure values of PPO and ZIF-8, which indicates good adhesion between the two phases. The permeability and He/CO2 selectivity increased with temperature, which indicates that applications at higher temperatures than those inspected should be encouraged.

14.
Membranes (Basel) ; 9(1)2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30621225

RESUMO

In an effort to reduce the experimental tests required to characterize the mixed-gas solubility and solubility-selectivity of materials for membrane separation processes, there is a need for reliable models which involve a minimum number of adjustable parameters. In this work, the ability of the Dual Mode Sorption (DMS) model to represent the sorption of CO2/CH4 mixtures in three high free volume glassy polymers, poly(trimethylsilyl propyne) (PTMSP), the first reported polymer of intrinsic microporosity (PIM-1) and tetrazole-modified PIM-1 (TZ-PIM), was tested. The sorption of gas mixtures in these materials suitable for CO2 separation has been characterized experimentally in previous works, which showed that these systems exhibit rather marked deviations from the ideal pure-gas behavior, especially due to competitive effects. The accuracy of the DMS model in representing the non-idealities that arise during mixed-gas sorption was assessed in a wide range of temperatures, pressures and compositions, by comparing with the experimental results available. Using the parameters obtained from the best fit of pure-gas sorption isotherms, the agreement between the mixed-gas calculations and the experimental data varied greatly in the different cases inspected, especially in the case of CH4 absorbed in mixed-gas conditions. A sensitivity analysis revealed that pure-gas data can be represented with the same accuracy by several different parameter sets, which, however, yield markedly different mixed-gas predictions, that, in some cases, agree with the experimental data only qualitatively. However, the multicomponent calculations with the DMS model yield more reliable results than the use of pure-gas data in the estimation of the solubility-selectivity of the material.

15.
Polymers (Basel) ; 10(2)2018 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-30966165

RESUMO

We fabricated novel composite (mixed matrix) membranes based on a permeable glassy polymer, Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO), and variable loadings of few-layer graphene, to test their potential in gas separation and CO2 capture applications. The permeability, selectivity and diffusivity of different gases as a function of graphene loading, from 0.3 to 15 wt %, was measured at 35 and 65 °C. Samples with small loadings of graphene show a higher permeability and He/CO2 selectivity than pure PPO, due to a favorable effect of the nanofillers on the polymer morphology. Higher amounts of graphene lower the permeability of the polymer, due to the prevailing effect of increased tortuosity of the gas molecules in the membrane. Graphene also allows dramatically reducing the increase of permeability with temperature, acting as a "stabilizer" for the polymer matrix. Such effect reduces the temperature-induced loss of size-selectivity for He/N2 and CO2/N2, and enhances the temperature-induced increase of selectivity for He/CO2. The study confirms that, as observed in the case of other graphene-based mixed matrix glassy membranes, the optimal concentration of graphene in the polymer is below 1 wt %. Below such threshold, the morphology of the nanoscopic filler added in solution affects positively the glassy chains packing, enhancing permeability and selectivity, and improving the selectivity of the membrane at increasing temperatures. These results suggest that small additions of graphene to polymers can enhance their permselectivity and stabilize their properties.

16.
RSC Adv ; 8(7): 3536-3546, 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35542925

RESUMO

Increasing the knowledge of the influence of water vapor in new mixed matrix membranes (MMMs) could favor the integration of novel membrane materials in the recovery of CO2 from wet industrial streams. In this work, the water vapor effect on the N2, CH4 and CO2 permeability through MMMs comprised of 20 wt% hydrophilic zeolite 4A in hydrophobic PTMSP polymer were investigated in the relative humidity range 0-75%. While in the pure PTMSP membranes, the permeability of all gases decreases with water vapor activity, with almost unchanged CO2/N2 and CO2/CH4 selectivities, in zeolite A/PTMSP MMMs, the CO2 permeability increases with increasing water content in the system up to 50% R.H., resulting in an increase in CO2/N2 and CO2/CH4 selectivities with respect to pure PTMSP. Gas sorption was studied so that the effect the residual humidity in the zeolite 4A has on the sorption of the different gases helped explaining the permeability observations. The sorption and humid permeation behavior were evaluated by a simple model equation based on the NELF theory, taking into account the multicomponent gas sorption and diffusion in the presence of humidity, as well as the counteracting effects of the hydrophobic PTMSP and hydrophilic zeolite A in a very accurate way.

17.
Annu Rev Chem Biomol Eng ; 2: 97-120, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22432612

RESUMO

This review discusses a macroscopic thermodynamic procedure to calculate the solubility of gases, vapors, and liquids in glassy polymers that is based on the general procedure provided by the nonequilibrium thermodynamics for glassy polymers (NET-GP) method. Several examples are presented using various nonequilibrium (NE) models including lattice fluid (NELF), statistical associating fluid theory (NE-SAFT), and perturbed hard sphere chain (NE-PHSC). Particular applications illustrate the calculation of infinite-dilution solubility coefficients in different glassy polymers and the prediction of solubility isotherms for different gases and vapors in pure polymers as well as in polymer blends. The determination of model parameters is discussed, and the predictive abilities of the models are illustrated. Attention is also given to the solubility of gas mixtures and solubility isotherms in nanocomposite mixed matrices. The fractional free volume determined from solubility data can be used to correlate solute diffusivities in mixed matrices.


Assuntos
Gases/química , Polímeros/química , Soluções/química , Modelos Químicos , Peso Molecular , Transição de Fase , Solubilidade , Termodinâmica
18.
J Phys Chem B ; 114(19): 6233-46, 2010 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-20426442

RESUMO

The solubility of benzene in linear polyethylene melts was estimated via Monte Carlo simulations using a united-atom molecular model at temperatures between 373 and 573 K, in the infinite dilution limit. The excess chemical potential of the solute was evaluated with the direct particle deletion (DPD) method, whose rigorous derivation is presented here in detail: in this scheme, the benzene molecule united atoms are converted to hard spheres and then removed from the polymer system. The simulations were carried out in the N(1)N(2)PT ensemble using advanced Monte Carlo moves to equilibrate the polymeric phase. The evaluation of the accessible volume fraction for the "hard sphere" solute molecule required by the DPD method was performed analytically. The effect of the value of the arbitrary hard sphere diameter, d, on the computed thermodynamic quantities was determined, allowing us to establish an optimal range for the system considered. The values of Henry's law constant are in good agreement with experimental data from the literature in the temperature range considered and are comparable to those obtained with the lattice fluid and PC(SAFT) equations of state for the same system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA