Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 55(11): 2085-2102.e9, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36228615

RESUMO

Microglia and border-associated macrophages (BAMs) are brain-resident self-renewing cells. Here, we examined the fate of microglia, BAMs, and recruited macrophages upon neuroinflammation and through resolution. Upon infection, Trypanosoma brucei parasites invaded the brain via its border regions, triggering brain barrier disruption and monocyte infiltration. Fate mapping combined with single-cell sequencing revealed microglia accumulation around the ventricles and expansion of epiplexus cells. Depletion experiments using genetic targeting revealed that resident macrophages promoted initial parasite defense and subsequently facilitated monocyte infiltration across brain barriers. These recruited monocyte-derived macrophages outnumbered resident macrophages and exhibited more transcriptional plasticity, adopting antimicrobial gene expression profiles. Recruited macrophages were rapidly removed upon disease resolution, leaving no engrafted monocyte-derived cells in the parenchyma, while resident macrophages progressively reverted toward a homeostatic state. Long-term transcriptional alterations were limited for microglia but more pronounced in BAMs. Thus, brain-resident and recruited macrophages exhibit diverging responses and dynamics during infection and resolution.


Assuntos
Macrófagos , Doenças Neuroinflamatórias , Humanos , Macrófagos/metabolismo , Monócitos/metabolismo , Microglia/metabolismo , Encéfalo
2.
Glia ; 71(9): 2071-2095, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37222453

RESUMO

Insights into the role astrocytes and microglia play in normal and diseased brain functioning has expanded drastically over the last decade. Recently, chemogenetic tools have emerged as cutting-edge techniques, allowing targeted and spatiotemporal precise manipulation of a specific glial cell type. As a result, significant advances in astrocyte and microglial cell function have been made, showing how glial cells can intervene in central nervous system (CNS) functions such as cognition, reward and feeding behavior in addition to their established contribution in brain diseases, pain, and CNS inflammation. Here, we discuss the latest insights in glial functions in health and disease that have been made through the application of chemogenetics. We will focus on the manipulation of intracellular signaling pathways induced by activation of the designer receptors exclusively activated by designer drugs (DREADDs) in astrocytes and microglia. We will also elaborate on some of the potential pitfalls and the translational potential of the DREADD technology.


Assuntos
Drogas Desenhadas , Microglia , Astrócitos , Drogas Desenhadas/farmacologia , Transdução de Sinais , Neuroglia
3.
Mol Psychiatry ; 27(4): 2355-2368, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35181756

RESUMO

The cystine/glutamate antiporter system xc- has been identified as the major source of extracellular glutamate in several brain regions as well as a modulator of neuroinflammation, and genetic deletion of its specific subunit xCT (xCT-/-) is protective in mouse models for age-related neurological disorders. However, the previously observed oxidative shift in the plasma cystine/cysteine ratio of adult xCT-/- mice led to the hypothesis that system xc- deletion would negatively affect life- and healthspan. Still, till now the role of system xc- in physiological aging remains unexplored. We therefore studied the effect of xCT deletion on the aging process of mice, with a particular focus on the immune system, hippocampal function, and cognitive aging. We observed that male xCT-/- mice have an extended lifespan, despite an even more increased plasma cystine/cysteine ratio in aged compared to adult mice. This oxidative shift does not negatively impact the general health status of the mice. On the contrary, the age-related priming of the innate immune system, that manifested as increased LPS-induced cytokine levels and hypothermia in xCT+/+ mice, was attenuated in xCT-/- mice. While this was associated with only a very moderate shift towards a more anti-inflammatory state of the aged hippocampus, we observed changes in the hippocampal metabolome that were associated with a preserved hippocampal function and the retention of hippocampus-dependent memory in male aged xCT-/- mice. Targeting system xc- is thus not only a promising strategy to prevent cognitive decline, but also to promote healthy aging.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Cistina , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Cisteína , Cistina/metabolismo , Ácido Glutâmico , Hipocampo/metabolismo , Longevidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Epilepsia ; 63(10): 2703-2715, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35775150

RESUMO

OBJECTIVE: Epileptic spikes and seizures seem present early in the disease process of Alzheimer's disease (AD). However, it is unclear how soluble and insoluble amyloid beta (Aß) and tau proteins affect seizure development in vivo. We aim to contribute to this field by assessing the vulnerability to 6 Hz corneal kindling of young female mice from two well-characterized transgenic AD models and by testing their responsiveness to selected antiseizure drugs (ASDs). METHODS: We used 7-week-old triple transgenic (3xTg) mice that have both amyloid and tau mutations, and amyloid precursor protein Swedish/presenillin 1 dE9 (APP/PS1) mice, bearing only amyloid-related mutations. We assessed the absence of plaques via immunohistochemistry and analyzed the concentrations of both soluble and insoluble forms of Aß1-42 and total tau (t-tau) in brain hippocampal and prefrontal cortical tissue. Seven-week-old mice of the different genotypes were subjected to the 6 Hz corneal kindling model. After kindling acquisition, we tested the anticonvulsant effects of three marketed ASDs (levetiracetam, brivaracetam, and lamotrigine) in fully kindled mice. RESULTS: No Aß plaques were present in either genotype. Soluble Aß1-42 levels were increased in both AD genotypes, whereas insoluble Aß1-42 concentrations were only elevated in APP/PS1 mice compared with their respective controls. Soluble and insoluble forms of t-tau were increased in 3xTg mice only. 3xTg and APP/PS1 mice displayed more severe seizures induced by 6 Hz corneal kindling from the first stimulation onward and were more rapidly kindled compared with control mice. In fully kindled AD mice, ASDs had less-pronounced anticonvulsive effects compared with controls. SIGNIFICANCE: Mutations increasing Aß only or both Aß and tau in the brain enhance susceptibility for seizures and kindling in mice. The effect of ASDs on seizures measured by the Racine scale is less pronounced in both investigated AD models and suggests that seizures of young AD mice are more difficult to treat.


Assuntos
Doença de Alzheimer , Proteínas tau , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Modelos Animais de Doenças , Feminino , Lamotrigina , Levetiracetam , Camundongos , Camundongos Transgênicos , Convulsões , Proteínas tau/metabolismo
5.
Int J Mol Sci ; 23(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36499610

RESUMO

Serotoninergic psychedelics such as psilocybin have been reported to elicit a long-lasting reduction in depressive symptoms. Although the main target for serotoninergic psychedelics, serotonin type 2A receptor (5-HT2A), has been established, the possible mechanism of the antidepressant action of psychedelics remains unknown. Using the mouse forced swim test model, we examined whether the administration of the synthetic serotoninergic psychedelic 2,5-dimethoxy-4-iodoamphetamine (DOI) would modulate 5-HT2A receptor levels in the medial prefrontal cortex (mPFC) and revert stress-induced changes in behavior. Mice subjected to swim stress developed a passive stress-coping strategy when tested in the forced swim test 6 days later. This change in behavior was not associated with the hypothesized increase in 5-HT2A receptor-dependent head twitch behaviors or consistent changes in 5-HT2A receptor levels in the mPFC. When DOI was administered 1 day before the forced swim test, a low dose (0.2 mg/kg i.p.) unexpectedly increased immobility while a high dose (2 mg/kg i.p.) had no significant effect on immobility. Nevertheless, DOI evoked a dose-dependent decrease in 5-HT2A levels in the mPFC of mice previously exposed to swim stress. Our findings do not support the hypothesis that the downregulation of 5-HT2A receptors in the mPFC contributes to the antidepressant-like properties of serotoninergic psychedelics.


Assuntos
Alucinógenos , Animais , Camundongos , Alucinógenos/farmacologia , Receptor 5-HT2A de Serotonina/genética , Anfetaminas/farmacologia , Serotonina , Natação , Antidepressivos/farmacologia
6.
Int J Mol Sci ; 23(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36012151

RESUMO

We report the design, synthesis, and validation of the novel compound photocaged N6-cyclopentyladenosine (cCPA) to achieve precisely localized and timed release of the parent adenosine A1 receptor agonist CPA using 405 nm light. Gi protein-coupled A1 receptors (A1Rs) modulate neurotransmission via pre- and post-synaptic routes. The dynamics of the CPA-mediated effect on neurotransmission, characterized by fast activation and slow recovery, make it possible to implement a closed-loop control paradigm. The strength of neurotransmission is monitored as the amplitude of stimulus-evoked local field potentials. It is used for feedback control of light to release CPA. This system makes it possible to regulate neurotransmission to a pre-defined level in acute hippocampal brain slices incubated with 3 µM cCPA. This novel approach of closed-loop photopharmacology holds therapeutic potential for fine-tuned control of neurotransmission in diseases associated with neuronal hyperexcitability.


Assuntos
Agonistas do Receptor A1 de Adenosina , Receptor A1 de Adenosina , Agonistas do Receptor A1 de Adenosina/farmacologia , Retroalimentação , Hipocampo/metabolismo , Receptor A1 de Adenosina/metabolismo , Transmissão Sináptica , Xantinas/farmacologia
7.
Eur J Neurol ; 28(9): 3100-3112, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34157194

RESUMO

BACKGROUND: Current drugs for epilepsy affect seizures, but no antiepileptogenic or disease-modifying drugs are available that prevent or slow down epileptogenesis, which is characterized by neuronal cell loss, inflammation and aberrant network formation. Ghrelin and ghrelin receptor (ghrelin-R) agonists were previously found to exert anticonvulsant, neuroprotective and anti-inflammatory effects in seizure models and immediately after status epilepticus (SE). Therefore, the aim of this study was to assess whether the ghrelin-R agonist macimorelin is antiepileptogenic in the pharmacoresistant intrahippocampal kainic acid (IHKA) mouse model. METHODS: SE was induced in C57BL/6 mice by unilateral IHKA injection. Starting 24 h after SE, mice were treated intraperitoneally with macimorelin (5 mg/kg) or saline twice daily for 2 weeks, followed by a 2-week wash-out. Mice were continuously electroencephalogram-monitored, and at the end of the experiment neuroprotection and gliosis were assessed. RESULTS: Macimorelin significantly decreased the number and duration of seizures during the treatment period, but had no antiepileptogenic or disease-modifying effect in this dose regimen. While macimorelin did not significantly affect food intake or body weight over a 2-week treatment period, its acute orexigenic effect was preserved in epileptic mice but not in sham mice. CONCLUSIONS: While the full ghrelin-R agonist macimorelin was not significantly antiepileptogenic nor disease-modifying, this is the first study to demonstrate its anticonvulsant effects in the IHKA model of drug-refractory temporal lobe epilepsy. These findings highlight the potential use of macimorelin as a novel treatment option for seizure suppression in pharmacoresistant epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Estado Epiléptico , Animais , Modelos Animais de Doenças , Eletroencefalografia , Hipocampo , Humanos , Indóis , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Grelina , Convulsões/tratamento farmacológico , Estado Epiléptico/tratamento farmacológico , Triptofano/análogos & derivados
8.
Nature ; 519(7544): 455-9, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25600269

RESUMO

Appropriate responses to an imminent threat brace us for adversities. The ability to sense and predict threatening or stressful events is essential for such adaptive behaviour. In the mammalian brain, one putative stress sensor is the paraventricular nucleus of the thalamus (PVT), an area that is readily activated by both physical and psychological stressors. However, the role of the PVT in the establishment of adaptive behavioural responses remains unclear. Here we show in mice that the PVT regulates fear processing in the lateral division of the central amygdala (CeL), a structure that orchestrates fear learning and expression. Selective inactivation of CeL-projecting PVT neurons prevented fear conditioning, an effect that can be accounted for by an impairment in fear-conditioning-induced synaptic potentiation onto somatostatin-expressing (SOM(+)) CeL neurons, which has previously been shown to store fear memory. Consistently, we found that PVT neurons preferentially innervate SOM(+) neurons in the CeL, and stimulation of PVT afferents facilitated SOM(+) neuron activity and promoted intra-CeL inhibition, two processes that are critical for fear learning and expression. Notably, PVT modulation of SOM(+) CeL neurons was mediated by activation of the brain-derived neurotrophic factor (BDNF) receptor tropomysin-related kinase B (TrkB). As a result, selective deletion of either Bdnf in the PVT or Trkb in SOM(+) CeL neurons impaired fear conditioning, while infusion of BDNF into the CeL enhanced fear learning and elicited unconditioned fear responses. Our results demonstrate that the PVT-CeL pathway constitutes a novel circuit essential for both the establishment of fear memory and the expression of fear responses, and uncover mechanisms linking stress detection in PVT with the emergence of adaptive behaviour.


Assuntos
Núcleo Central da Amígdala/fisiologia , Medo/fisiologia , Vias Neurais/fisiologia , Tálamo/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Núcleo Central da Amígdala/citologia , Condicionamento Psicológico/fisiologia , Medo/psicologia , Feminino , Masculino , Memória/fisiologia , Camundongos , Vias Neurais/citologia , Plasticidade Neuronal , Neurônios/metabolismo , Receptor trkB/metabolismo , Somatostatina/metabolismo , Tálamo/citologia , Fatores de Tempo
9.
J Neurochem ; 154(4): 389-403, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32128814

RESUMO

The ghrelin system was previously proposed to mediate an independent branch of the stress response that curbs fear processing. Interestingly, the ghrelin system was also shown to control the activity of midbrain dopamine neurons. Given that dopamine neurons of the ventral tegmental area appear to have a critical role in fear processing, we aimed to investigate their contribution to the effects of ghrelin on fear processing. Our data show that systemic administration of the ghrelin receptor agonist MK0677, in a dose that induces food intake, has no significant effect on auditory fear processing and does not significantly affect dopamine release in the nucleus accumbens of male C57BL/6J mice. Local administration of the ghrelin receptor agonist MK0677 into the ventral tegmental area significantly increases food intake and it also significantly increased dopamine release in the nucleus accumbens, the medial prefrontal cortex and the amygdala. Nevertheless, it did not significantly affect auditory fear extinction. Our data indicate that pharmacological activation of midbrain dopamine neurons using a ghrelin receptor agonist does not affect auditory fear extinction. We also investigated the effect of non-pharmacological manipulation of the ghrelin system on auditory fear processing. However, we found that neither overnight food deprivation nor genetic ablation of the ghrelin receptor had a significant effect on auditory fear extinction. We conclude that the effects of manipulation of the ghrelin system on fear processing are subject to boundary conditions that remain poorly understood.


Assuntos
Dopamina/metabolismo , Extinção Psicológica/fisiologia , Medo , Prosencéfalo/metabolismo , Receptores de Grelina/metabolismo , Animais , Condicionamento Clássico , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
Horm Behav ; 121: 104666, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31899262

RESUMO

Neuromedin U (NMU) is a highly conserved neuropeptide that has been implicated in the stress response. To better understand how it influences various aspects of the stress response, we studied the effects of intracerebroventricular NMU-8 administration on stress-related behavior and activity of the hypothalamus-pituitary-adrenal (HPA) axis in male C57BL/6J mice. We investigated these NMU-8 effects when mice remained in their home cage and when they were challenged by exposure to forced swim stress. NMU-8 administration resulted in increased grooming behavior in mice that remained in their home cage and in a significant increase in c-Fos immunoreactivity in the paraventricular hypothalamus (PVH) and arcuate nucleus (ARC). Surprisingly, NMU-8 administration significantly decreased plasma corticosterone concentrations. Furthermore, NMU-8 administration increased immobility in the forced swim test in both naïve mice and mice that were previously exposed to swim stress. The effect of NMU-8 on c-Fos immunoreactivity in the PVH was dependent on previous exposure to swim stress given that we observed no significant changes in mice exposed for the first time to swim stress. In contrast, in the ARC we observed a significant increase in c-Fos immunoreactivity regardless of previous stress exposure. Interestingly, NMU-8 administration also significantly decreased plasma corticosterone concentrations in mice that were exposed to single forced swim stress, while this effect was no longer observed when mice were exposed to forced swim stress for a second time. Taken together, our data indicate that NMU-8 regulates stress responsiveness and suggests that its effects depend on previous stress exposure.


Assuntos
Corticosterona/sangue , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Neuropeptídeos/farmacologia , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Estresse Psicológico/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Corticosterona/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Psicológico/sangue , Estresse Psicológico/fisiopatologia , Natação/psicologia
11.
Epilepsia ; 60(11): 2314-2324, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31608439

RESUMO

OBJECTIVE: More than one-third of patients with temporal lobe epilepsy (TLE) continue to have seizures despite treatment with antiepileptic drugs, and many experience severe drug-related side effects, illustrating the need for novel therapies. Selective expression of inhibitory Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) allows cell-type-specific reduction of neuronal excitability. In this study, we evaluated the effect of chemogenetic suppression of excitatory pyramidal and granule cell neurons of the sclerotic hippocampus in the intrahippocampal mouse model (IHKA) for temporal lobe epilepsy. METHODS: Intrahippocampal IHKA mice were injected with an adeno-associated viral vector carrying the genes for an inhibitory DREADD hM4Di in the sclerotic hippocampus or control vector. Next, animals were treated systemically with different single doses of clozapine-N-oxide (CNO) (1, 3, and 10 mg/kg) and clozapine (0.03 and 0.1 mg/kg) and the effect on spontaneous hippocampal seizures, hippocampal electroencephalography (EEG) power, fast ripples (FRs) and behavior in the open field test was evaluated. Finally, animals received prolonged treatment with clozapine for 3 days and the effect on seizures was monitored. RESULTS: Treatment with both CNO and clozapine resulted in a robust suppression of hippocampal seizures for at least 15 hours only in DREADD-expressing animals. Moreover, total EEG power and the number of FRs were significantly reduced. CNO and/or clozapine had no effects on interictal hippocampal EEG, seizures, or locomotion/anxiety in the open field test in non-DREADD epileptic IHKA mice. Repeated clozapine treatment every 8 hours for 3 days resulted in almost complete seizure suppression in DREADD animals. SIGNIFICANCE: This study shows the potency of chemogenetics to robustly and sustainably suppress spontaneous epileptic seizures and pave the way for an epilepsy therapy in which a systemically administered exogenous drug selectively modulates specific cell types in a seizure network, leading to a potent seizure suppression devoid of the typical drug-related side effects.


Assuntos
Anticonvulsivantes/administração & dosagem , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/prevenção & controle , Convulsões/genética , Convulsões/prevenção & controle , Animais , Clozapina/administração & dosagem , Clozapina/análogos & derivados , Eletroencefalografia/efeitos dos fármacos , Eletroencefalografia/métodos , Epilepsia do Lobo Temporal/fisiopatologia , Vetores Genéticos/administração & dosagem , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Ácido Caínico/administração & dosagem , Ácido Caínico/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Convulsões/fisiopatologia
12.
Neurochem Res ; 44(3): 600-608, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30097883

RESUMO

Temporal lobe epilepsy (TLE) is an acquired form of focal epilepsy, in which patients not only suffer from unprovoked, devastating seizures, but also from severe comorbidities, such as cognitive dysfunction. Correspondingly, several animal models of TLE exhibit memory dysfunction, especially spatial memory. The Morris water maze test is the most commonly used test for assessing spatial learning and memory in rodents. However, high stress and poor swimming abilities are common confounders and may contribute to misinterpretation. Particularly epileptic mice show altered behaviour during the test as they fail to understand the paradigm context. In the Barnes maze test, a dry-land maze test for spatial learning and memory that uses milder aversive stimuli, these drawbacks have not yet been reported. In the present study, we use this task to evaluate spatial learning and memory in the intrahippocampal kainic acid mouse model of TLE. We demonstrate that the epileptic mice understand the Barnes maze paradigm context, as they learn the location of the escape-chamber by using a serial search strategy but fail to develop the more efficient spatial search strategy. Our data indicate that the Barnes maze may be a better alternative to the Morris water maze for assessing search strategies and impairment of learning and memory in epileptic mice.


Assuntos
Epilepsia do Lobo Temporal/fisiopatologia , Hipocampo/fisiopatologia , Aprendizagem em Labirinto/fisiologia , Aprendizagem Espacial/fisiologia , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/induzido quimicamente , Ácido Caínico/farmacologia , Camundongos Endogâmicos C57BL , Percepção Espacial/fisiologia , Memória Espacial/fisiologia
13.
Proc Natl Acad Sci U S A ; 113(10): E1382-91, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26903620

RESUMO

Higher-level cognitive processes strongly depend on a complex interplay between mediodorsal thalamus nuclei and the prefrontal cortex (PFC). Alteration of thalamofrontal connectivity has been involved in cognitive deficits of schizophrenia. Prefrontal serotonin (5-HT)2A receptors play an essential role in cortical network activity, but the mechanism underlying their modulation of glutamatergic transmission and plasticity at thalamocortical synapses remains largely unexplored. Here, we show that 5-HT2A receptor activation enhances NMDA transmission and gates the induction of temporal-dependent plasticity mediated by NMDA receptors at thalamocortical synapses in acute PFC slices. Expressing 5-HT2A receptors in the mediodorsal thalamus (presynaptic site) of 5-HT2A receptor-deficient mice, but not in the PFC (postsynaptic site), using a viral gene-delivery approach, rescued the otherwise absent potentiation of NMDA transmission, induction of temporal plasticity, and deficit in associative memory. These results provide, to our knowledge, the first physiological evidence of a role of presynaptic 5-HT2A receptors located at thalamocortical synapses in the control of thalamofrontal connectivity and the associated cognitive functions.


Assuntos
Aprendizagem por Associação/fisiologia , Córtex Cerebral/fisiologia , Plasticidade Neuronal/fisiologia , Receptor 5-HT2A de Serotonina/fisiologia , Tálamo/fisiologia , Animais , Western Blotting , Córtex Cerebral/metabolismo , Fenômenos Eletrofisiológicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Plasticidade Neuronal/genética , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , Proteína Quinase C/metabolismo , Ratos Sprague-Dawley , Receptor 5-HT2A de Serotonina/genética , Receptor 5-HT2A de Serotonina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Tálamo/metabolismo , Fosfolipases Tipo C/metabolismo
14.
Int J Mol Sci ; 20(10)2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31137460

RESUMO

The ghrelin system has received substantial recognition as a potential target for novel anti-seizure drugs. Ghrelin receptor (ghrelin-R) signaling is complex, involving Gαq/11, Gαi/o, Gα12/13, and ß-arrestin pathways. In this study, we aimed to deepen our understanding regarding signaling pathways downstream the ghrelin-R responsible for mediating anticonvulsive effects in a kindling model. Mice were administered the proconvulsive dopamine 1 receptor-agonist, SKF81297, to gradually induce a kindled state. Prior to every SKF81297 injection, mice were treated with a ghrelin-R full agonist (JMV-1843), a Gαq and Gα12 biased ligand unable to recruit ß-arrestin (YIL781), a ghrelin-R antagonist (JMV-2959), or saline. Mice treated with JMV-1843 had fewer and less severe seizures compared to saline-treated controls, while mice treated with YIL781 experienced longer and more severe seizures. JMV-2959 treatment did not lead to differences in seizure severity and number. Altogether, these results indicate that the Gαq or Gα12 signaling pathways are not responsible for mediating JMV-1843's anticonvulsive effects and suggest a possible involvement of ß-arrestin signaling in the anticonvulsive effects mediated by ghrelin-R modulation.


Assuntos
Encéfalo/metabolismo , Excitação Neurológica , Receptores de Grelina/agonistas , Animais , Benzazepinas/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Agonistas de Dopamina/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piperidinas/farmacologia , Quinazolinonas/farmacologia , Receptores de Grelina/antagonistas & inibidores , Triazóis/farmacologia , Triptofano/análogos & derivados , Triptofano/farmacologia , beta-Arrestinas/farmacologia
15.
Glia ; 66(8): 1788-1804, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29683209

RESUMO

Accumulating evidence shows a key function for astrocytic connexin43 (Cx43) signaling in epilepsy. However, the lack of experimental distinction between Cx43 gap junction channels (GJCs) and hemichannels (HCs) has impeded the identification of the exact contribution of either channel configurations to epilepsy. We therefore investigated whether TAT-Gap19, a Cx mimetic peptide that inhibits Cx43 HCs but not the corresponding Cx43 GJCs, influences experimentally induced seizures in rodents. Dye uptake experiments in acute hippocampal slices of mice demonstrated that astroglial Cx43 HCs open in response to the chemoconvulsant pilocarpine and this was inhibited by TAT-Gap19. In vivo, pilocarpine-induced seizures as well as the accompanying increase in D-serine microdialysate levels were suppressed by Cx43 HC inhibition. Moreover, the anticonvulsant action of TAT-Gap19 was reversed by exogenous D-serine administration, suggesting that Cx43 HC inhibition protects against seizures by lowering extracellular D-serine levels. The anticonvulsive properties of Cx43 HC inhibition were further confirmed in electrical seizure mouse models, i.e. an acute 6 Hertz (Hz) model of refractory seizures and a chronic 6 Hz corneal kindling model. Collectively, these results indicate that Cx43 HCs play a role in seizures and underscore their potential as a novel and druggable target in epilepsy treatment.


Assuntos
Anticonvulsivantes/farmacologia , Astrócitos/efeitos dos fármacos , Conexina 43/metabolismo , Fragmentos de Peptídeos/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Astrócitos/metabolismo , Conexinas/metabolismo , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos Transgênicos , Transdução de Sinais/efeitos dos fármacos
16.
Glia ; 66(9): 1845-1861, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29693305

RESUMO

The communication between the immune and central nervous system (CNS) is affected in many neurological disorders. Peripheral injections of the endotoxin lipopolysaccharide (LPS) are widely used to study this communication: an LPS challenge leads to a biphasic syndrome that starts with acute sickness and is followed by persistent brain inflammation and chronic behavioral alterations such as depressive-like symptoms. In vitro, the response to LPS treatment has been shown to involve enhanced expression of system x c - . This cystine-glutamate antiporter, with xCT as specific subunit, represents the main glial provider of extracellular glutamate in mouse hippocampus. Here we injected male xCT knockout and wildtype mice with a single intraperitoneal dose of 5 mg/kg LPS. LPS-injection increased hippocampal xCT expression but did not alter the mainly astroglial localization of the xCT protein. Peripheral and central inflammation (as defined by cytokine levels and morphological activation of microglia) as well as LPS-induced sickness and depressive-like behavior were significantly attenuated in xCT-deficient mice compared with wildtype mice. Our study is the first to demonstrate the involvement of system x c - in peripheral and central inflammation in vivo and the potential therapeutic relevance of its inhibition in brain disorders characterized by peripheral and central inflammation, such as depression.


Assuntos
Sistema y+ de Transporte de Aminoácidos/deficiência , Depressão/metabolismo , Comportamento de Doença/fisiologia , Inflamação/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Citocinas/metabolismo , Depressão/patologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Deleção de Genes , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Inflamação/patologia , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , RNA Mensageiro/metabolismo
17.
Epilepsia ; 59(1): 67-78, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29152735

RESUMO

OBJECTIVE: Besides seizures, patients with epilepsy are affected by a variety of cognitive and psychiatric comorbidities that further impair their quality of life. The present study provides an in-depth characterization of the behavioral alterations induced by 6 Hz corneal kindling. Furthermore, we correlate these behavioral changes to alterations in c-Fos protein expression throughout the brain following kindling. METHODS: Adolescent male Naval Medical Research Institute (NMRI) mice were kindled via repetitive subconvulsive 6 Hz corneal stimulations until they reached the fully kindled state (defined as 10 consecutive generalized seizures). Afterwards we performed an elaborate battery of behavioral tests and we evaluated c-Fos expression throughout the brain using immunohistochemistry. RESULTS: Fully kindled mice display an abnormal behavioral phenotype, characterized by basal and amphetamine-induced hyperlocomotion, anhedonia, social withdrawal, and deficits in short- and long-term memory. Moreover, 6 Hz corneal kindling enhances c-Fos immunoreactivity in the visual, parahippocampal, and motor cortices and the limbic system, whereas c-Fos+ cells are decreased in the orbital cortex of fully kindled mice. SIGNIFICANCE: The behavioral outcomes of 6 Hz corneal kindling cluster into 3 main categories: positive symptoms, negative symptoms, and cognitive impairment. These symptoms are accompanied by c-Fos activation in relevant brain regions once the fully kindled state is established. Based on the face validity of this model, we speculate that 6 Hz corneal kindling can be used to model not only pharmacoresistant limbic seizures, but also several neurobehavioral comorbidities that affect patients with epilepsy.


Assuntos
Encéfalo/metabolismo , Hipercinese/etiologia , Excitação Neurológica/fisiologia , Transtornos Mentais/etiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Convulsões/complicações , Convulsões/patologia , Anfetamina/farmacologia , Animais , Peso Corporal/fisiologia , Estimulantes do Sistema Nervoso Central/farmacologia , Córnea , Modelos Animais de Doenças , Estimulação Elétrica/efeitos adversos , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Regulação da Expressão Gênica/fisiologia , Relações Interpessoais , Excitação Neurológica/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Convulsões/etiologia
18.
Int J Mol Sci ; 18(3)2017 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-28273852

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder, characterized by a loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). Caloric restriction (CR) has been shown to exert ghrelin-dependent neuroprotective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-based animal model for PD. We here investigated whether CR is neuroprotective in the lactacystin (LAC) mouse model for PD, in which proteasome disruption leads to the destruction of the DA neurons of the SNc, and whether this effect is mediated via the ghrelin receptor. Adult male ghrelin receptor wildtype (WT) and knockout (KO) mice were maintained on an ad libitum (AL) diet or on a 30% CR regimen. After 3 weeks, LAC was injected unilaterally into the SNc, and the degree of DA neuron degeneration was evaluated 1 week later. In AL mice, LAC injection significanty reduced the number of DA neurons and striatal DA concentrations. CR protected against DA neuron degeneration following LAC injection. However, no differences were observed between ghrelin receptor WT and KO mice. These results indicate that CR can protect the nigral DA neurons from toxicity related to proteasome disruption; however, the ghrelin receptor is not involved in this effect.


Assuntos
Acetilcisteína/análogos & derivados , Restrição Calórica , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Fármacos Neuroprotetores , Receptores de Grelina/metabolismo , Acetilcisteína/administração & dosagem , Acetilcisteína/farmacologia , Fatores Etários , Animais , Contagem de Células , Masculino , Camundongos , Camundongos Knockout , Receptores de Grelina/genética , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia
19.
J Neurosci ; 35(34): 11960-75, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26311777

RESUMO

Within the hippocampus, the major somatostatin (SRIF) receptor subtype, the sst2A receptor, is localized at postsynaptic sites of the principal neurons where it modulates neuronal activity. Following agonist exposure, this receptor rapidly internalizes and recycles slowly through the trans-Golgi network. In epilepsy, a high and chronic release of somatostatin occurs, which provokes, in both rat and human tissue, a decrease in the density of this inhibitory receptor at the cell surface. The insulin-regulated aminopeptidase (IRAP) is involved in vesicular trafficking and shares common regional distribution with the sst2A receptor. In addition, IRAP ligands display anticonvulsive properties. We therefore sought to assess by in vitro and in vivo experiments in hippocampal rat tissue whether IRAP ligands could regulate the trafficking of the sst2A receptor and, consequently, modulate limbic seizures. Using pharmacological and cell biological approaches, we demonstrate that IRAP ligands accelerate the recycling of the sst2A receptor that has internalized in neurons in vitro or in vivo. Most importantly, because IRAP ligands increase the density of this inhibitory receptor at the plasma membrane, they also potentiate the neuropeptide SRIF inhibitory effects on seizure activity. Our results further demonstrate that IRAP is a therapeutic target for the treatment of limbic seizures and possibly for other neurological conditions in which downregulation of G-protein-coupled receptors occurs. SIGNIFICANCE STATEMENT: The somatostatin type 2A receptor (sst2A) is localized on principal hippocampal neurons and displays anticonvulsant properties. Following agonist exposure, however, this receptor rapidly internalizes and recycles slowly. The insulin-regulated aminopeptidase (IRAP) is involved in vesicular trafficking and shares common regional distribution with the sst2A receptor. We therefore assessed by in vitro and in vivo experiments whether IRAP could regulate the trafficking of this receptor. We demonstrate that IRAP ligands accelerate sst2A recycling in hippocampal neurons. Because IRAP ligands increase the density of sst2A receptors at the plasma membrane, they also potentiate the effects of this inhibitory receptor on seizure activity. Our results further demonstrate that IRAP is a therapeutic target for the treatment of limbic seizures.


Assuntos
Cistinil Aminopeptidase/metabolismo , Hipocampo/metabolismo , Receptores de Somatostatina/metabolismo , Convulsões/metabolismo , Convulsões/prevenção & controle , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Sistema Límbico/metabolismo , Masculino , Camundongos , Transporte Proteico/fisiologia , Ratos , Ratos Wistar
20.
Epilepsia ; 57(9): e195-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27378373

RESUMO

Ghrelin has anticonvulsant and neuroprotective effects in models of chemoconvulsant-induced seizures and status epilepticus. In this study we investigated whether deletion of the ghrelin receptor could alter the kindling process in the 6 Hz corneal kindling model and whether ghrelin receptor ligands possess anticonvulsant effects in fully kindled mice. Ghrelin receptor wild-type and knockout mice were electrically stimulated at a subconvulsive current twice daily via corneal electrodes until they reached the fully kindled state. Mice lacking the ghrelin receptor showed similar seizure severity during kindling acquisition as well as in the maintenance phase when compared to their wild-type littermates. Subsequently we proceeded by investigating possible anticonvulsant effects of the ghrelin receptor ligands in the acute 6 Hz seizure model and the fully 6 Hz kindled mice. The ghrelin receptor agonist JMV-1843 decreased the seizure severity score both in acutely 6 Hz stimulated mice and in fully kindled ghrelin receptor wild-type mice, but not in fully kindled ghrelin receptor knockout mice. No effect on seizure severity was observed following the ghrelin receptor antagonist JMV-2959 in both models. This finding indicates that JMV-1843 exerts an anticonvulsant effect in kindled mice via the ghrelin receptor.


Assuntos
Anticonvulsivantes/uso terapêutico , Córnea/inervação , Excitação Neurológica/efeitos dos fármacos , Receptores de Grelina/agonistas , Estado Epiléptico/tratamento farmacológico , Animais , Modelos Animais de Doenças , Estimulação Elétrica/efeitos adversos , Glicina/análogos & derivados , Glicina/uso terapêutico , Indóis , Excitação Neurológica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oligopeptídeos/uso terapêutico , Receptores de Grelina/deficiência , Receptores de Grelina/genética , Estado Epiléptico/genética , Triazóis/uso terapêutico , Triptofano/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA