Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Proc Biol Sci ; 289(1984): 20221178, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36196543

RESUMO

Global warming and precipitation extremes (drought or increased precipitation) strongly affect plant primary production and thereby terrestrial ecosystem functioning. Recent syntheses show that combined effects of warming and precipitation extremes on plant biomass are generally additive, while individual experiments often show interactive effects, indicating that combined effects are more negative or positive than expected based on the effects of single factors. Here, we examined whether variation in biomass responses to single and combined effects of warming and precipitation extremes can be explained by plant growth form and community type. We performed a meta-analysis of 37 studies, which experimentally crossed warming and precipitation treatments, to test whether biomass responses to combined effects of warming and precipitation extremes depended on plant woodiness and community type (monocultures versus mixtures). Our results confirmed that the effects of warming and precipitation extremes were overall additive. However, combined effects of warming and drought on above- and belowground biomass were less negative in woody- than in herbaceous plant systems and more negative in plant mixtures than in monocultures. We further show that drought effects on plant biomass were more negative in greenhouse, than in field studies, suggesting that greenhouse experiments may overstate drought effects in the field. Our results highlight the importance of plant system characteristics to better understand plant responses to climate change.


Assuntos
Secas , Ecossistema , Biomassa , Mudança Climática , Plantas
2.
Ecol Lett ; 23(6): 973-982, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32266749

RESUMO

Soil legacy effects are commonly highlighted as drivers of plant community dynamics and species co-existence. However, experimental evidence for soil legacy effects of conditioning plant communities on responding plant communities under natural conditions is lacking. We conditioned 192 grassland plots using six different plant communities with different ratios of grasses and forbs and for different durations. Soil microbial legacies were evident for soil fungi, but not for soil bacteria, while soil abiotic parameters did not significantly change in response to conditioning. The soil legacies affected the composition of the succeeding vegetation. Plant communities with different ratios of grasses and forbs left soil legacies that negatively affected succeeding plants of the same functional type. We conclude that fungal-mediated soil legacy effects play a significant role in vegetation assembly of natural plant communities.


Assuntos
Pradaria , Solo , Fungos , Plantas , Microbiologia do Solo
3.
J Anim Ecol ; 86(4): 705-707, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28597603

RESUMO

Photos from the experiment described in Shao et al. (): (a) the endogeic (i.e. earthworms that typically live in the soil, burrowing horizontally to acquire nutrients) earthworm Pontoscolex corethrurus that was added to the plots; (b) P. corethrurus in a quiescence state in response to drought; (c) set-up of the control plots (i.e. no earthworms, ambient nitrogen) used in this experiment. [Colour figure can be viewed at wileyonlinelibrary.com] In Focus: Shao, Y., Zhang, W., Eisenhauer, N., Liu, T., Xiong, Y., Liang, C. & Fu, S. (2017) Nitrogen deposition cancels out exotic earthworm effects on plant-feeding nematode communities. Journal of Animal Ecology, 86, 708-717. In this issue of Journal of Animal Ecology, Shao et al. () explored how N addition and exotic earthworms interacted to impact on the plant-feeding nematode community. They demonstrate that exotic earthworm presence alone increased the abundance of less harmful plant-feeding nematodes and decreased the abundance of the more harmful plant-feeding nematodes. However, in plots receiving both exotic earthworms and N addition, such earthworm effects on the nematode community were negated. These findings pull focus on the need to simultaneously consider multiple global change factors (e.g. exotic species invasions and N deposition) when making predictions about how such factors might affect above- and below-ground interactions and thereby alter ecosystem function.


Assuntos
Nematoides , Nitrogênio/metabolismo , Oligoquetos , Animais , Ecossistema , Solo
4.
Oecologia ; 184(3): 685-699, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28669001

RESUMO

Evidence of the indirect effects of increasing global deer populations on other trophic levels is increasing. However, it remains unknown if excluding deer alters ecosystem functional relationships. We investigated how sika deer exclosure after 18 years changed soil conditions, the understory plant community, the traits of a dominant understory plant (Sasa palmata), herbivory by three insect-feeding guilds, and the functional relationships between these properties. Deer absence decreased understory plant diversity, but increased soil organic matter and ammonium concentrations. When deer were absent, S. palmata plants grew taller, with more, larger, and tougher leaves with higher polyphenol concentrations. Deer absence led to higher leaf area consumed by all insect guilds, but lower insect herbivory per plant due to increased resource abundance (i.e., a dilution effect). This indicates that deer presence strengthened insect herbivory per plant, while in deer absence plants compensated losses with growth. Because plant defenses increased in the absence of deer, higher insect abundances in deer absence may have outweighed lower consumption rates. A path model revealed that the functional relationships between the measured properties were similar between deer absence versus presence. Taken together, deer altered the abiotic and biotic environment, thereby changing insect herbivory, which might impact upon nutrient cycling and primary productivity. These results provide evidence that deer can alter interactions between trophic levels, but that functional relationships between certain ecosystem components may remain constant. These findings highlight the need to consider how increasing global deer populations can have cascade effects that might alter ecosystem dynamics.


Assuntos
Cervos , Herbivoria , Insetos , Animais , Plantas , Dinâmica Populacional , Solo
5.
Ecology ; 105(6): e4295, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723655

RESUMO

Species traits may determine plant interactions along with soil microbiome, further shaping plant-soil feedbacks (PSFs). However, how plant traits modulate PSFs and, consequently, the dominance of plant functional groups remains unclear. We used a combination of field surveys and a two-phase PSF experiment to investigate whether forbs and graminoids differed in PSFs and in their trait-PSF associations. When grown in forb-conditioned soils, forbs experienced stronger negative feedbacks, while graminoids experienced positive feedbacks. Graminoid-conditioned soil resulted in neutral PSFs for both functional types. Forbs with thin roots and small seeds showed more-negative PSFs than those with thick roots and large seeds. Conversely, graminoids with acquisitive root and leaf traits (i.e., thin roots and thin leaves) demonstrated greater positive PSFs than graminoids with thick roots and tough leaves. By distinguishing overall and soil biota-mediated PSFs, we found that the associations between plant traits and PSFs within both functional groups were mainly mediated by soil biota. A simulation model demonstrated that such differences in PSFs could lead to a dominance of graminoids over forbs in natural plant communities, which might explain why graminoids dominate in grasslands. Our study provides new insights into the differentiation and adaptation of plant life-history strategies under selection pressures imposed by soil biota.


Assuntos
Microbiologia do Solo , Solo , Solo/química , Modelos Biológicos , Magnoliopsida/fisiologia , Especificidade da Espécie
6.
Ann Bot ; 111(3): 409-18, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23275632

RESUMO

BACKGROUND AND AIMS: Mycorrhizal specialization has been shown to limit recruitment capacity in orchids, but an increasing number of orchids are being documented as invasive or weed-like. The reasons for this proliferation were examined by investigating mycorrhizal fungi and edaphic correlates of Microtis media, an Australian terrestrial orchid that is an aggressive ecosystem and horticultural weed. METHODS: Molecular identification of fungi cultivated from M. media pelotons, symbiotic in vitro M. media seed germination assays, ex situ fungal baiting of M. media and co-occurring orchid taxa (Caladenia arenicola, Pterostylis sanguinea and Diuris magnifica) and soil physical and chemical analyses were undertaken. KEY RESULTS: It was found that: (1) M. media associates with a broad taxonomic spectrum of mycobionts including Piriformospora indica, Sebacina vermifera, Tulasnella calospora and Ceratobasidium sp.; (2) germination efficacy of mycorrhizal isolates was greater for fungi isolated from plants in disturbed than in natural habitats; (3) a higher percentage of M. media seeds germinate than D. magnifica, P. sanguinea or C. arenicola seeds when incubated with soil from M. media roots; and (4) M. media-mycorrhizal fungal associations show an unusual breadth of habitat tolerance, especially for soil phosphorus (P) fertility. CONCLUSIONS: The findings in M. media support the idea that invasive terrestrial orchids may associate with a diversity of fungi that are widespread and common, enhance seed germination in the host plant but not co-occurring orchid species and tolerate a range of habitats. These traits may provide the weedy orchid with a competitive advantage over co-occurring orchid species. If so, invasive orchids are likely to become more broadly distributed and increasingly colonize novel habitats.


Assuntos
Ecossistema , Micorrizas/crescimento & desenvolvimento , Orchidaceae/microbiologia , Microbiologia do Solo , Adaptação Fisiológica , Austrália , Basidiomycota/classificação , Basidiomycota/crescimento & desenvolvimento , Variação Genética , Germinação , Espécies Introduzidas , Micorrizas/classificação , Orchidaceae/crescimento & desenvolvimento , Fósforo/química , Filogenia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Sementes/crescimento & desenvolvimento , Solo/química , Simbiose
7.
Sci Total Environ ; 879: 162850, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36931513

RESUMO

Grazing affects grasslands worldwide. However, the global patterns and general mechanisms of how grazing affects plant reproductive traits are poorly understood, especially in the context of different climates and grazing duration. We conducted a meta-analysis of 114 independent grazing studies worldwide that measured plant reproductive traits in grasslands. The results showed that the number of tillers of plant increased under grazing. Grazing did not affect the number of reproductive branches of forbs, but significantly reduced the number of reproductive branches of grasses. Grazing increased the number of vegetative branches of all plants and reduced the proportion of reproductive branches. Grazing significantly reduced the number of flowers in forbs. Seed yield in the two plant functional groups was reduced compared with no-grazing. Under grazing, the sexual reproduction of grasses decreased much more substantially than that of forbs. This may be due to biomass allocation pattern of grasses under grazing (i.e., belowground versus aboveground). Under grazing, plants tended to adopt rapid, low-input asexual reproduction rather than long-term, high-risk sexual reproduction. This study represents the first large-scale evaluation of plant reproductive trait responses under grazing and demonstrates that grazing inhibits sexual reproduction and promotes asexual reproduction. The effect of grazing on plant sexual reproduction was influenced by grazing intensity, mean annual precipitation, and grazing duration. These results will assist in the development of sustainable grazing management strategies to improve the balance between human welfare and grassland ecosystem health.


Assuntos
Ecossistema , Plantas , Humanos , Biomassa , Poaceae/fisiologia , Reprodução , Reprodução Assexuada , Herbivoria , Pradaria
8.
Sci Total Environ ; 842: 156241, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35644397

RESUMO

Overgrazing directly and indirectly affects soil microorganisms, which can have feedback effects on plant growth. Little is known about the root metabolites plants produce and whether they recruit beneficial microbes in response to overgrazing. Here, we used the dominant grassland species Leymus chinensis to explore correlations between root metabolites and the rhizosphere microbiome shaped by long-term overgrazing, which was determined by using LC-MS technology and high-throughput sequencing. In total, 839 metabolites were detected, with 41 significantly higher and 3 significantly lower in overgrazing versus grazing exclusion plots. The rhizosphere bacterial community was changed, but the fungal community was not altered. Moreover, 11 bacterial orders were found only in the overgrazed samples, and these showed close relationships to root metabolites and certain soil properties. Of these, Latescibacterales, B10-SB3A, and Nitrosococcales are known to be involved in growth promotion, C and N metabolism, respectively. In addition, root metabolites play an important role in mediating root-fungi interactions. The beneficial fungal orders Agaricales and Sordariales have a tread to be higher maybe due to root metabolites, mainly facilitate nutrient absorption and protect organic carbon in the soil, respectively. Our results indicate that grassland plants send metabolic signals to recruit key beneficial bacteria and stabilize fungal communities to alleviate grazing-induced stress in typical grassland ecosystems.


Assuntos
Microbiota , Microbiologia do Solo , Bactérias/metabolismo , Fungos/metabolismo , Raízes de Plantas/microbiologia , Plantas , Rizosfera , Solo
9.
Nat Commun ; 12(1): 5686, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584090

RESUMO

Plant-soil feedbacks are shaped by microbial legacies that plants leave in the soil. We tested the persistence of these legacies after subsequent colonization by the same or other plant species using 6 typical grassland plant species. Soil fungal legacies were detectable for months, but the current plant effect on fungi amplified in time. By contrast, in bacterial communities, legacies faded away rapidly and bacteria communities were influenced strongly by the current plant. However, both fungal and bacterial legacies were conserved inside the roots of the current plant species and their composition significantly correlated with plant growth. Hence, microbial soil legacies present at the time of plant establishment play a vital role in shaping plant growth even when these legacies have faded away in the soil due the growth of the current plant species. We conclude that soil microbiome legacies are reversible and versatile, but that they can create plant-soil feedbacks via altering the endophytic community acquired during early ontogeny.


Assuntos
Endófitos/fisiologia , Microbiota/fisiologia , Raízes de Plantas/microbiologia , Poaceae/crescimento & desenvolvimento , Microbiologia do Solo , Biologia Computacional , Pradaria , Raízes de Plantas/crescimento & desenvolvimento , Poaceae/microbiologia
10.
Anim Microbiome ; 2(1): 37, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33499994

RESUMO

BACKGROUND: Insect-associated microorganisms can provide a wide range of benefits to their host, but insect dependency on these microbes varies greatly. The origin and functionality of insect microbiomes is not well understood. Many caterpillars can harbor symbionts in their gut that impact host metabolism, nutrient uptake and pathogen protection. Despite our lack of knowledge on the ecological factors driving microbiome assemblages of wild caterpillars, they seem to be highly variable and influenced by diet and environment. Several recent studies have shown that shoot-feeding caterpillars acquire part of their microbiome from the soil. Here, we examine microbiomes of a monophagous caterpillar (Tyria jacobaeae) collected from their natural host plant (Jacobaea vulgaris) growing in three different environments: coastal dunes, natural inland grasslands and riverine grasslands, and compare the bacterial communities of the wild caterpillars to those of soil samples collected from underneath each of the host plants from which the caterpillars were collected. RESULTS: The microbiomes of the caterpillars were dominated by Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. Only 5% of the total bacterial diversity represented 86.2% of the total caterpillar's microbiome. Interestingly, we found a high consistency of dominant bacteria within the family Burkholderiaceae in all caterpillar samples across the three habitats. There was one amplicon sequence variant belonging to the genus Ralstonia that represented on average 53% of total community composition across all caterpillars. On average, one quarter of the caterpillar microbiome was shared with the soil. CONCLUSIONS: We found that the monophagous caterpillars collected from fields located more than 100 km apart were all dominated by a single Ralstonia. The remainder of the bacterial communities that were present resembled the local microbial communities in the soil in which the host plant was growing. Our findings provide an example of a caterpillar that has just a few key associated bacteria, but that also contains a community of low abundant bacteria characteristic of soil communities.

11.
Funct Ecol ; 33(8): 1400-1410, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31588158

RESUMO

Maternal effects (i.e. trans-generational plasticity) and soil legacies generated by drought and plant diversity can affect plant performance and alter nutrient cycling and plant community dynamics. However, the relative importance and combined effects of these factors on plant growth dynamics remain poorly understood.We used soil and seeds from an existing plant diversity and drought manipulation field experiment in temperate grassland to test maternal, soil drought and diversity legacy effects, and their interactions, on offspring plant performance of two grassland species (Alopecurus pratensis and Holcus lanatus) under contrasting glasshouse conditions.Our results showed that drought soil legacy effects eclipsed maternal effects on plant biomass. Drought soil legacy effects were attributed to changes in both abiotic (i.e. nutrient availability) and biotic soil properties (i.e. microbial carbon and enzyme activity), as well as plant root and shoot atom 15N excess. Further, plant tissue nutrient concentrations and soil microbial C:N responses to drought legacies varied between the two plant species and soils from high and low plant diversity treatments. However, these diversity effects did not affect plant root or shoot biomass.These findings demonstrate that while maternal effects resulting from drought occur in grasslands, their impacts on plant performance are likely minor relative to drought legacy effects on soil abiotic and biotic properties. This suggests that soil drought legacy effects could become increasingly important drivers of plant community dynamics and ecosystem functioning as extreme weather events become more frequent and intense with climate change. A plain language summary is available for this article.

12.
mBio ; 10(6)2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848279

RESUMO

Microorganisms are found everywhere and have critical roles in most ecosystems, but compared to plants and animals, little is known about their temporal dynamics. Here, we investigated the temporal stability of bacterial and fungal communities in the soil and how their temporal variation varies between grasses and forb species. We established 30 outdoor mesocosms consisting of six plant monocultures and followed microbial communities for an entire year in these soils. We demonstrate that bacterial communities vary greatly over time and that turnover plays an important role in shaping microbial communities. We further show that bacterial communities rapidly shift from one state to another and that this is related to changes in the relative contribution of certain taxa rather than to extinction. Fungal soil communities are more stable over time, and a large part of the variation can be explained by plant species and by whether they are grasses or forbs. Our findings show that the soil bacterial community is shaped by time, while plant group and plant species-specific effects drive soil fungal communities. This has important implications for plant-soil research and highlights that temporal dynamics of soil communities cannot be ignored in studies on plant-soil feedback and microbial community composition and function.IMPORTANCE Our findings highlight how soil fungal and bacterial communities respond to time, season, and plant species identity. We found that succession shapes the soil bacterial community, while plant species and the type of plant species that grows in the soil drive the assembly of soil fungal communities. Future research on the effects of plants on soil microbes should take into consideration the relative roles of both time and plant growth on creating soil legacies that impact future plants growing in the soil. Understanding the temporal (in)stability of microbial communities in soils will be crucial for predicting soil microbial composition and functioning, especially as plant species compositions will shift with global climatic changes and land-use alterations. As fungal and bacterial communities respond to different environmental cues, our study also highlights that the selection of study organisms to answer specific ecological questions is not trivial and that the timing of sampling can greatly affect the conclusions made from these studies.


Assuntos
Bactérias/classificação , Fungos/classificação , Micobioma , Poaceae/fisiologia , Microbiologia do Solo , Simbiose , Biodiversidade , Temperatura
13.
J Ecol ; 107(4): 1704-1719, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31341333

RESUMO

The use of plant traits to predict ecosystem functions has been gaining growing attention. Above-ground plant traits, such as leaf nitrogen (N) content and specific leaf area (SLA), have been shown to strongly relate to ecosystem productivity, respiration and nutrient cycling. Furthermore, increasing plant functional trait diversity has been suggested as a possible mechanism to increase ecosystem carbon (C) storage. However, it is uncertain whether below-ground plant traits can be predicted by above-ground traits, and if both above- and below-ground traits can be used to predict soil properties and ecosystem-level functions.Here, we used two adjacent field experiments in temperate grassland to investigate if above- and below-ground plant traits are related, and whether relationships between plant traits, soil properties and ecosystem C fluxes (i.e. ecosystem respiration and net ecosystem exchange) measured in potted monocultures could be detected in mixed field communities.We found that certain shoot traits (e.g. shoot N and C, and leaf dry matter content) were related to root traits (e.g. root N, root C:N and root dry matter content) in monocultures, but such relationships were either weak or not detected in mixed communities. Some relationships between plant traits (i.e. shoot N, root N and/or shoot C:N) and soil properties (i.e. inorganic N availability and microbial community structure) were similar in monocultures and mixed communities, but they were more strongly linked to shoot traits in monocultures and root traits in mixed communities. Structural equation modelling showed that above- and below-ground traits and soil properties improved predictions of ecosystem C fluxes in monocultures, but not in mixed communities on the basis of community-weighted mean traits. Synthesis. Our results from a single grassland habitat detected relationships in monocultures between above- and below-ground plant traits, and between plant traits, soil properties and ecosystem C fluxes. However, these relationships were generally weaker or different in mixed communities. Our results demonstrate that while plant traits can be used to predict certain soil properties and ecosystem functions in monocultures, they are less effective for predicting how changes in plant species composition influence ecosystem functions in mixed communities.

14.
F1000Res ; 7: 4, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29333264

RESUMO

There are great concerns about the impacts of soil biodiversity loss on ecosystem functions and services such as nutrient cycling, food production, and carbon storage. A diverse community of soil organisms that together comprise a complex food web mediates such ecosystem functions and services. Recent advances have shed light on the key drivers of soil food web structure, but a conceptual integration is lacking. Here, we explore how human-induced changes in plant community composition influence soil food webs. We present a framework describing the mechanistic underpinnings of how shifts in plant litter and root traits and microclimatic variables impact on the diversity, structure, and function of the soil food web. We then illustrate our framework by discussing how shifts in plant communities resulting from land-use change, climatic change, and species invasions affect soil food web structure and functioning. We argue that unravelling the mechanistic links between plant community trait composition and soil food webs is essential to understanding the cascading effects of anthropogenic shifts in plant communities on ecosystem functions and services.

15.
ISME J ; 12(7): 1794-1805, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29523892

RESUMO

There are numerous ways in which plants can influence the composition of soil communities. However, it remains unclear whether information on plant community attributes, including taxonomic, phylogenetic, or trait-based composition, can be used to predict the structure of soil communities. We tested, in both monocultures and field-grown mixed temperate grassland communities, whether plant attributes predict soil communities including taxonomic groups from across the tree of life (fungi, bacteria, protists, and metazoa). The composition of all soil community groups was affected by plant species identity, both in monocultures and in mixed communities. Moreover, plant community composition predicted additional variation in soil community composition beyond what could be predicted from soil abiotic characteristics. In addition, analysis of the field aboveground plant community composition and the composition of plant roots suggests that plant community attributes are better predictors of soil communities than root distributions. However, neither plant phylogeny nor plant traits were strong predictors of soil communities in either experiment. Our results demonstrate that grassland plant species form specific associations with soil community members and that information on plant species distributions can improve predictions of soil community composition. These results indicate that specific associations between plant species and complex soil communities are key determinants of biodiversity patterns in grassland soils.


Assuntos
Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Filogenia , Plantas/microbiologia , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Biodiversidade , Fungos/classificação , Fungos/genética , Fenótipo , Raízes de Plantas/microbiologia , Plantas/classificação , Solo/química
16.
Sci Adv ; 4(11): eaau4578, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30498781

RESUMO

Feedbacks between plants and soil microbial communities play an important role in vegetation dynamics, but the underlying mechanisms remain unresolved. Here, we show that the diversity of putative pathogenic, mycorrhizal, and saprotrophic fungi is a primary regulator of plant-soil feedbacks across a broad range of temperate grassland plant species. We show that plant species with resource-acquisitive traits, such as high shoot nitrogen concentrations and thin roots, attract diverse communities of putative fungal pathogens and specialist saprotrophs, and a lower diversity of mycorrhizal fungi, resulting in strong plant growth suppression on soil occupied by the same species. Moreover, soil properties modulate feedbacks with fertile soils, promoting antagonistic relationships between soil fungi and plants. This study advances our capacity to predict plant-soil feedbacks and vegetation dynamics by revealing fundamental links between soil properties, plant resource acquisition strategies, and the diversity of fungal guilds in soil.


Assuntos
Biodiversidade , Pradaria , Micorrizas/classificação , Plantas/microbiologia , Microbiologia do Solo , Solo/química , Micorrizas/fisiologia , Filogenia
18.
Nat Ecol Evol ; 1(12): 1836-1845, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29133902

RESUMO

Our basic understanding of plant litter decomposition informs the assumptions underlying widely applied soil biogeochemical models, including those embedded in Earth system models. Confidence in projected carbon cycle-climate feedbacks therefore depends on accurate knowledge about the controls regulating the rate at which plant biomass is decomposed into products such as CO2. Here we test underlying assumptions of the dominant conceptual model of litter decomposition. The model posits that a primary control on the rate of decomposition at regional to global scales is climate (temperature and moisture), with the controlling effects of decomposers negligible at such broad spatial scales. Using a regional-scale litter decomposition experiment at six sites spanning from northern Sweden to southern France-and capturing both within and among site variation in putative controls-we find that contrary to predictions from the hierarchical model, decomposer (microbial) biomass strongly regulates decomposition at regional scales. Furthermore, the size of the microbial biomass dictates the absolute change in decomposition rates with changing climate variables. Our findings suggest the need for revision of the hierarchical model, with decomposers acting as both local- and broad-scale controls on litter decomposition rates, necessitating their explicit consideration in global biogeochemical models.


Assuntos
Ciclo do Carbono , Clima , Microbiologia do Solo , Mudança Climática , Europa (Continente) , Modelos Teóricos
19.
R Soc Open Sci ; 1(3): 140141, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26064553

RESUMO

Predicting how plants will respond to global warming necessitates understanding of local plant adaptation to temperature. Temperature may exert selective effects on plants directly, and also indirectly through environmental factors that covary with temperature, notably soil properties. However, studies on the interactive effects of temperature and soil properties on plant adaptation are rare, and the role of abiotic versus biotic soil properties in plant adaptation to temperature remains untested. We performed two growth chamber experiments using soils and Bistorta vivipara bulbil ecotypes from a subarctic elevational gradient (temperature range: ±3(°)C) in northern Sweden to disentangle effects of local ecotype, temperature, and biotic and abiotic properties of soil origin on plant growth. We found partial evidence for local adaption to temperature. Although soil origin affected plant growth, we did not find support for local adaptation to either abiotic or biotic soil properties, and there were no interactive effects of soil origin with ecotype or temperature. Our results indicate that ecotypic variation can be an important driver of plant responses to the direct effects of increasing temperature, while responses to covariation in soil properties are of a phenotypic, rather than adaptive, nature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA