RESUMO
Anthrax is a globally important animal disease and zoonosis. Despite this, our current knowledge of anthrax ecology is largely limited to arid ecosystems, where outbreaks are most commonly reported. Here we show that the dynamics of an anthrax-causing agent, Bacillus cereus biovar anthracis, in a tropical rainforest have severe consequences for local wildlife communities. Using data and samples collected over three decades, we show that rainforest anthrax is a persistent and widespread cause of death for a broad range of mammalian hosts. We predict that this pathogen will accelerate the decline and possibly result in the extirpation of local chimpanzee (Pan troglodytes verus) populations. We present the epidemiology of a cryptic pathogen and show that its presence has important implications for conservation.
Assuntos
Doenças dos Animais/mortalidade , Animais Selvagens/microbiologia , Antraz/veterinária , Bacillus anthracis/patogenicidade , Mamíferos/microbiologia , Floresta Úmida , Clima Tropical , África Subsaariana , Doenças dos Animais/microbiologia , Animais , Antraz/microbiologia , Antraz/mortalidade , Bacillus anthracis/isolamento & purificação , Dípteros/microbiologia , Extinção Biológica , Feminino , Masculino , Pan troglodytes/microbiologia , Parques Recreativos , FilogeniaRESUMO
To clarify the role of bats in the ecology of Ebola viruses, we assessed the prevalence of Ebola virus antibodies in a large-scale sample of bats collected during 2015-2017 from countries in Africa that have had previous Ebola outbreaks (Guinea, the Democratic Republic of the Congo) or are at high risk for outbreaks (Cameroon). We analyzed 4,022 blood samples of bats from >12 frugivorous and 27 insectivorous species; 2-37 (0.05%-0.92%) bats were seropositive for Zaire and 0-30 (0%-0.75%) bats for Sudan Ebola viruses. We observed Ebola virus antibodies in 1 insectivorous bat genus and 6 frugivorous bat species. Certain bat species widespread across Africa had serologic evidence of Zaire and Sudan Ebola viruses. No viral RNA was detected in the subset of samples tested (n = 665). Ongoing surveillance of bats and other potential animal reservoirs are required to predict and prepare for future outbreaks.
Assuntos
Doenças dos Animais/epidemiologia , Doenças dos Animais/virologia , Quirópteros/virologia , Ebolavirus , Doença pelo Vírus Ebola/veterinária , Doenças dos Animais/história , Doenças dos Animais/imunologia , Animais , Anticorpos Antivirais , Camarões/epidemiologia , República Democrática do Congo/epidemiologia , Surtos de Doenças , Ebolavirus/classificação , Ebolavirus/genética , Ebolavirus/imunologia , Geografia Médica , Guiné/epidemiologia , História do Século XXI , Vigilância em Saúde Pública , Estudos SoroepidemiológicosRESUMO
Fecal samples are an important source of information on parasites (viruses, prokaryotes, or eukaryotes) infecting wild great apes. Molecular analysis of fecal samples has already been used for deciphering the origins of major human pathogens such as HIV-1 or Plasmodium falciparum. However, for apes that hunt (chimpanzees and bonobos), detection of parasite nucleic acids may reflect either true infection of the host of interest or ingestion of an infected prey, for example, another non-human primate. To determine the potential magnitude of this issue, we estimated the prevalence of prey DNA in fecal samples obtained from two wild chimpanzee communities. We observed values >15%, which are higher than or close to the fecal detection rates of many great ape parasites. Contamination of fecal samples with parasite DNA from dietary origin may therefore occasionally impact non-invasive epidemiological studies. This problem can be addressed (at least partially) by monitoring the presence of prey DNA.
Assuntos
Fezes/química , Gorilla gorilla/genética , Pan troglodytes/genética , Animais , Côte d'Ivoire , DNA Mitocondrial/análise , DNA Mitocondrial/genética , Fezes/parasitologia , Gabão , Gorilla gorilla/parasitologia , Epidemiologia Molecular , Pan troglodytes/parasitologia , Comportamento Predatório , RNA Ribossômico 16S/análise , Especificidade da EspécieRESUMO
Emergence of viruses into the human population by transmission from nonhuman primates (NHPs) represents a serious potential threat to human health that is primarily associated with the increased bushmeat trade. Transmission of RNA viruses across primate species appears to be relatively frequent. In contrast, DNA viruses appear to be largely host specific, suggesting low transmission potential. Herein, we use a primate predator-prey system to study the risk of herpesvirus transmission between different primate species in the wild. The system was comprised of western chimpanzees (Pan troglodytes verus) and their primary (western red colobus, Piliocolobus badius badius) and secondary (black-and-white colobus, Colobus polykomos) prey monkey species. NHP species were frequently observed to be coinfected with multiple beta- and gammaherpesviruses (including new cytomegalo- and rhadinoviruses). However, despite frequent exposure of chimpanzees to blood, organs, and bones of their herpesvirus-infected monkey prey, there was no evidence for cross-species herpesvirus transmission. These findings suggest that interspecies transmission of NHP beta- and gammaherpesviruses is, at most, a rare event in the wild.
Assuntos
Colobus/virologia , Ecossistema , Infecções por Herpesviridae/transmissão , Herpesviridae/patogenicidade , Pan troglodytes/virologia , Comportamento Predatório , Primatas/virologia , Animais , Colobus/genética , DNA Viral/genética , Herpesviridae/classificação , Herpesviridae/genética , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Humanos , Pan troglodytes/genética , FilogeniaRESUMO
BACKGROUND: The diversity of malaria parasites (Plasmodium sp.) infecting chimpanzees (Pan troglodytes) and their close relatedness with those infecting humans is well documented. However, their biology is still largely unexplored and there is a need for baseline epidemiological data. Here, the effect of pregnancy, a well-known risk factor for malaria in humans, on the susceptibility of female chimpanzees to malaria infection was investigated. METHODS: A series of 384 faecal samples collected during 40 pregnancies and 36 post-pregnancies from three habituated groups of wild chimpanzees in the Taï National Park, Côte d'Ivoire, were tested. Samples were tested for malaria parasites by polymerase chain reaction (PCR) and sequencing. Data were analysed using a generalized linear mixed model. RESULTS: Probability of malaria parasite detection significantly increased towards the end of pregnancy and decreased with the age of the mother. CONCLUSIONS: This study provides evidence that susceptibility to malaria parasite infection increases during pregnancy, and, as shown before, in younger individuals, which points towards similar dynamics of malaria parasite infection in human and chimpanzee populations and raises questions about the effects of such infections on pregnancy outcome and offspring morbidity/mortality.
Assuntos
Malária/epidemiologia , Pan troglodytes/parasitologia , Complicações Parasitárias na Gravidez/epidemiologia , Animais , Côte d'Ivoire/epidemiologia , Fezes/parasitologia , Feminino , Malária/parasitologia , Malária/veterinária , Gravidez , Complicações Parasitárias na Gravidez/parasitologia , Complicações Parasitárias na Gravidez/veterináriaRESUMO
Wild great apes are widely infected with a number of malaria parasites (Plasmodium spp.). Yet, nothing is known about the biology of these infections in the wild. Using faecal samples collected from wild chimpanzees, we investigated the effect of age on Plasmodium spp. detection rates. The data show a strong association between age and malaria parasite positivity, with significantly lower detection rates in adults. This suggests that, as in humans, individuals reaching adulthood have mounted an effective protective immunity against malaria parasites.
Assuntos
Doenças dos Símios Antropoides/epidemiologia , Malária/veterinária , Pan troglodytes , Plasmodium/isolamento & purificação , Distribuição por Idade , Animais , Doenças dos Símios Antropoides/parasitologia , Côte d'Ivoire , Estudos Transversais , Fezes/parasitologia , Feminino , Malária/epidemiologia , Malária/parasitologia , Masculino , Dados de Sequência Molecular , Reação em Cadeia da Polimerase/métodos , Reação em Cadeia da Polimerase/veterinária , Prevalência , Especificidade da EspécieRESUMO
Studying wildlife space use in human-modified environments contributes to characterize wildlife-human interactions to assess potential risks of zoonotic-pathogens transmission, and to pinpoint conservation issues. In central African rainforests with human dwelling and activities, we conducted a telemetry study on a group of males of Hypsignathus monstrosus, a lek-mating fruit bat identified as a potential maintenance host for Ebola virus. During a lekking season in 2020, we investigated the foraging-habitat selection and the individual nighttime space use during both mating and foraging activities close to villages and their surrounding agricultural landscape. At night, marked individuals strongly selected agricultural lands and more generally areas near watercourses to forage, where they spent more time compared to forest ones. Furthermore, the probability and duration of the presence of bats in the lek during nighttime decreased with the distance to their roost site but remained relatively high within a 10 km radius. Individuals adjusted foraging behaviors according to mating activity by reducing both the overall time spent in foraging areas and the number of forest areas used to forage when they spent more time in the lek. Finally, the probability of a bat revisiting a foraging area in the following 48 hours increased with the previous time spent in that foraging area. These behaviors occurring close to or in human-modified habitats can trigger direct and indirect bat-human contacts, which could thus facilitate pathogen transmission such as Ebola virus.
RESUMO
The seroprevalence to orthoebolaviruses was studied in 9594 bats (5972 frugivorous and 3622 insectivorous) from Cameroon, the Democratic Republic of Congo (DRC) and Guinea, with a Luminex-based serological assay including recombinant antigens of four orthoebolavirus species. Seroprevalence is expressed as a range according to different cut-off calculations. Between 6.1% and 18.9% bat samples reacted with at least one orthoebolavirus antigen; the highest reactivity was seen with Glycoprotein (GP) antigens. Seroprevalence varied per species and was higher in frugivorous than insectivorous bats; 9.1-27.5% versus 1.3-4.6%, respectively. Seroprevalence in male (13.5%) and female (14.4%) bats was only slightly different and was higher in adults (14.9%) versus juveniles (9.4%) (p < 0.001). Moreover, seroprevalence was highest in subadults (45.4%) when compared to mature adults (19.2%), (p < 0.001). Our data suggest orthoebolavirus circulation is highest in young bats. More long-term studies are needed to identify birthing pulses for the different bat species in diverse geographic regions and to increase the chances of detecting viral RNA in order to document the genetic diversity of filoviruses in bats and their pathogenic potential for humans. Frugivorous bats seem more likely to be reservoirs of orthoebolaviruses, but the role of insectivorous bats has also to be further examined.
RESUMO
The Ebola virus disease epidemic that threatened West Africa between 2013 and 2016 was of unprecedented health magnitude. After this health crisis, studies highlighted the need to introduce community-based surveillance systems and to adopt a One Health approach. This study aimed to provide preparatory insights for the definition of a community-based surveillance system for emerging zoonoses such as viral hemorrhagic fevers in Guinea. The objective was to explore the disease detection capacity and the surveillance network opportunities at the community level in two pilot areas in the forest region of Guinea, where the epidemic emerged. Based on a participatory epidemiological and One Health approach, we conducted Focus Group Discussions with human, animal and ecosystem health actors. We used a range of participatory tools, included semi-structured interviews, ranking, scoring and flow diagram, to estimate the local knowledge and perception of diseases and clinical signs and to investigate the existing health information exchange network and its related strengths and weaknesses. The results showed that there is heterogeneity in knowledge of diseases and perception of the clinical signs among actors and that there are preferred and more effective health communication channels opportunities. This preparatory study suggests that it is necessary to adapt the case definitions and the health communication channels to the different actors who can play a role in a future community-based surveillance system and provides recommendations for future surveillance activities to be carried out in West Africa.
Assuntos
Doença pelo Vírus Ebola , Saúde Única , Animais , Ecossistema , Florestas , Guiné/epidemiologia , Doença pelo Vírus Ebola/epidemiologia , Humanos , Zoonoses/epidemiologiaRESUMO
BACKGROUND: Studies have linked bats to outbreaks of viral diseases in human populations such as SARS-CoV-1 and MERS-CoV and the ongoing SARS-CoV-2 pandemic. METHODS: We carried out a longitudinal survey from August 2020 to July 2021 at two sites in Zimbabwe with bat-human interactions: Magweto cave and Chirundu farm. A total of 1732 and 1866 individual bat fecal samples were collected, respectively. Coronaviruses and bat species were amplified using PCR systems. RESULTS: Analysis of the coronavirus sequences revealed a high genetic diversity, and we identified different sub-viral groups in the Alphacoronavirus and Betacoronavirus genus. The established sub-viral groups fell within the described Alphacoronavirus sub-genera: Decacovirus, Duvinacovirus, Rhinacovirus, Setracovirus and Minunacovirus and for Betacoronavirus sub-genera: Sarbecoviruses, Merbecovirus and Hibecovirus. Our results showed an overall proportion for CoV positive PCR tests of 23.7% at Chirundu site and 16.5% and 38.9% at Magweto site for insectivorous bats and Macronycteris gigas, respectively. CONCLUSIONS: The higher risk of bat coronavirus exposure for humans was found in December to March in relation to higher viral shedding peaks of coronaviruses in the parturition, lactation and weaning months of the bat populations at both sites. We also highlight the need to further document viral infectious risk in human/domestic animal populations surrounding bat habitats in Zimbabwe.
Assuntos
Alphacoronavirus , COVID-19 , Quirópteros , Animais , COVID-19/epidemiologia , Evolução Molecular , Feminino , Genoma Viral , Filogenia , SARS-CoV-2/genética , Zimbábue/epidemiologiaRESUMO
The ecology of ebolaviruses is still poorly understood and the role of bats in outbreaks needs to be further clarified. Straw-colored fruit bats (Eidolon helvum) are the most common fruit bats in Africa and antibodies to ebolaviruses have been documented in this species. Between December 2018 and November 2019, samples were collected at approximately monthly intervals in roosting and feeding sites from 820 bats from an Eidolon helvum colony. Dried blood spots (DBS) were tested for antibodies to Zaire, Sudan, and Bundibugyo ebolaviruses. The proportion of samples reactive with GP antigens increased significantly with age from 0-9/220 (0-4.1%) in juveniles to 26-158/225 (11.6-70.2%) in immature adults and 10-225/372 (2.7-60.5%) in adult bats. Antibody responses were lower in lactating females. Viral RNA was not detected in 456 swab samples collected from 152 juvenile and 214 immature adult bats. Overall, our study shows that antibody levels increase in young bats suggesting that seroconversion to Ebola or related viruses occurs in older juvenile and immature adult bats. Multiple year monitoring would be needed to confirm this trend. Knowledge of the periods of the year with the highest risk of Ebolavirus circulation can guide the implementation of strategies to mitigate spill-over events.
Assuntos
Quirópteros , Ebolavirus , Animais , Anticorpos Antivirais , Camarões/epidemiologia , Ebolavirus/genética , Feminino , LactaçãoRESUMO
The unexpected Ebola virus outbreak in West Africa in 2014 involving the Zaire ebolavirus made clear that other regions outside Central Africa, its previously documented niche, were at risk of future epidemics. The complex transmission cycle and a lack of epidemiological data make mapping areas at risk of the disease challenging. We used a Geographic Information System-based multicriteria evaluation (GIS-MCE), a knowledge-based approach, to identify areas suitable for Ebola virus spillover to humans in regions of Guinea, Congo and Gabon where Ebola viruses already emerged. We identified environmental, climatic and anthropogenic risk factors and potential hosts from a literature review. Geographical data layers, representing risk factors, were combined to produce suitability maps of Ebola virus spillover at the landscape scale. Our maps show high spatial and temporal variability in the suitability for Ebola virus spillover at a fine regional scale. Reported spillover events fell in areas of intermediate to high suitability in our maps, and a sensitivity analysis showed that the maps produced were robust. There are still important gaps in our knowledge about what factors are associated with the risk of Ebola virus spillover. As more information becomes available, maps produced using the GIS-MCE approach can be easily updated to improve surveillance and the prevention of future outbreaks.
Assuntos
Ebolavirus/fisiologia , Doença pelo Vírus Ebola/epidemiologia , África/epidemiologia , Animais , Quirópteros/virologia , Surtos de Doenças , Reservatórios de Doenças/virologia , Ebolavirus/genética , Feminino , Sistemas de Informação Geográfica , Doença pelo Vírus Ebola/transmissão , Doença pelo Vírus Ebola/virologia , Humanos , Masculino , Fatores de Risco , Estações do AnoRESUMO
BACKGROUND: Improved understanding of the foraging ecology of bats in the face of ongoing habitat loss and modification worldwide is essential to their conservation and maintaining the substantial ecosystem services they provide. It is also fundamental to assessing potential transmission risks of zoonotic pathogens in human-wildlife interfaces. We evaluated the influence of environmental and behavioral variables on the foraging patterns of Pteropus lylei (a reservoir of Nipah virus) in a heterogeneous landscape in Cambodia. METHODS: We employed an approach based on animal-movement modeling, which comprised a path-segmentation method (hidden Markov model) to identify individual foraging-behavior sequences in GPS data generated by eight P. lylei. We characterized foraging localities, foraging activity, and probability of returning to a given foraging locality over consecutive nights. Generalized linear mixed models were also applied to assess the influence of several variables including proxies for energetic costs and quality of foraging areas. RESULTS: Bats performed few foraging bouts (area-restricted searches) during a given night, mainly in residential areas, and the duration of these decreased during the night. The probability of a bat revisiting a given foraging area within 48 h varied according to the duration previously spent there, its distance to the roost site, and the corresponding habitat type. We interpret these fine-scale patterns in relation to global habitat quality (including food-resource quality and predictability), habitat-familiarity and experience of each individual. CONCLUSIONS: Our study provides evidence that heterogeneous human-made environments may promote complex patterns of foraging-behavior and short-term re-visitation in fruit bat species that occur in such landscapes. This highlights the need for similarly detailed studies to understand the processes that maintain biodiversity in these environments and assess the potential for pathogen transmission in human-wildlife interfaces.
RESUMO
Zoonoses can constitute a threat for public health that can have a global importance, as seen with the current COVID-19 pandemic of severe acute respiratory syndrome coronavirus (SARS-CoV2). Bats have been recognized as an important reservoir of zoonotic coronaviruses (CoVs). In West Africa, where there is a high diversity of bat species, little is known on the circulation of CoVs in these hosts, especially at the interface with human populations. In this study, in Guinea, we tested a total of 319 bats belonging to 14 genera and six families of insectivorous and frugivorous bats across the country, for the presence of coronaviruses. We found CoVs in 35 (11%) of the tested bats-in three insectivorous bat species and five fruit bat species that were mostly captured close to human habitat. Positivity rates varied from 5.7% to 100%, depending on bat species. A wide diversity of alpha and beta coronaviruses was found across the country, including three sequences belonging to SarbeCoVs and MerbeCoVs subgenera known to harbor highly pathogenic human coronaviruses. Our findings suggest that CoVs are widely spread in West Africa and their circulation should be assessed to evaluate the risk of exposure of potential zoonotic CoVs to humans.
Assuntos
Quirópteros/virologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Coronavirus/classificação , Coronavirus/genética , Animais , Betacoronavirus/isolamento & purificação , Biodiversidade , COVID-19 , Coronavirus/isolamento & purificação , Feminino , Genoma Viral , Guiné , Humanos , Masculino , Pandemias , Filogenia , Projetos Piloto , Pneumonia Viral/veterinária , Pneumonia Viral/virologia , SARS-CoV-2 , Zoonoses/virologiaRESUMO
The ecology of Ebola virus (EBV) remains largely unknown, but the previous detection of viral RNA and anti-EBV antibodies in African bats suggests that they might play a role in the EBV reservoir. Moreover, African bats also carry other potentially zoonotic agents such as Henipah-like viruses, coronaviruses and lyssaviruses. Today only little information is available on interactions between humans and bats. The objective of our exploratory study was to describe the extent and modes of contacts between humans and bats in southern Cameroon, considered as an area at risk for future EBV outbreaks. The survey was conducted in 11 villages of four distinct rural areas in southern Cameroon. A total of 135 respondents were interviewed using semi-structured questionnaires, between February and May 2017. The study showed that direct contacts between bats and humans are relatively common. Bat bushmeat appeared to be an occasional meat resource; 40% of respondents consume bats with a median annual consumption of three, and 28% of respondents hunt them. About 22% of the respondents reported children catching bats. Indirect contact also appeared to be common; 55% of hunters use caves as shelters and 67% of interviewees eat fruits previously chewed by bats. Bat consumption varied significantly between regions (from 0% to 87%) and between pygmies and bantus in the extreme south-east of Cameroon. The study revealed considerable diversity in practices among interviewees, most of them being subsistence cultivators and relying on self-hunted bushmeat. Geographical diversity of contacts and perceptions regarding bats in Cameroon emphasizes the need to adjust zoonotic pathogen surveillance and education campaigns to the specificities of the communities and their context of interaction with wildlife.
Assuntos
Quirópteros/virologia , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/virologia , Zoonoses , Animais , Camarões/epidemiologia , Coleta de Dados , Conhecimentos, Atitudes e Prática em Saúde , Doença pelo Vírus Ebola/transmissão , Humanos , Inquéritos e QuestionáriosRESUMO
The maintenance mechanisms of ebolaviruses in African forest ecosystems are still unknown, but indirect evidences point at the involvement of some bat species. Despite intense research, the main bat-maintenance hypothesis has not been confirmed yet. The alternative hypotheses of a non-bat maintenance host or a maintenance community including, or not, several bat and other species, deserves more investigation. However, African forest ecosystems host a large biodiversity and abound in potential maintenance hosts. How does one puzzle out? Since recent studies have revealed that several bat species have been exposed to ebolaviruses, the common denominator to these hypotheses is that within the epidemiological cycle, some bats species must be exposed to the viruses and infected by these potential alternative hosts. Under this constraint, and given the peculiar ecology of bats (roosting behaviour, habitat utilisation, and flight mode), we review the hosts and transmission pathways that can lead to bat exposure and infection to ebolaviruses. In contrast to the capacity of bats to transmit ebolaviruses and other pathogens to many hosts, our results indicate that only a limited number of hosts and pathways can lead to the transmission of ebolaviruses to bats, and that the alternative maintenance host, if it exists, must be amongst them. A list of these pathways is provided, along with protocols to prioritise and investigate these alternative hypotheses. In conclusion, taking into account the ecology of bats and their known involvement in ebolaviruses ecology drastically reduces the list of potential alternative maintenance hosts for ebolaviruses. Understanding the natural history of ebolaviruses is a health priority, and investigating these alternative hypotheses could complete the current effort focused on the role of bats.
Assuntos
Quirópteros/virologia , Reservatórios de Doenças/virologia , Ebolavirus/isolamento & purificação , Doença pelo Vírus Ebola/virologia , África , Animais , Ebolavirus/classificação , Ebolavirus/genética , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/transmissão , Humanos , Zoonoses/transmissão , Zoonoses/virologiaRESUMO
Humans and African great apes (AGAs) are naturally infected with several species of closely related malaria parasites. The need to understand the origins of human malaria as well as the risk of zoonotic transmissions and emergence of new malaria strains in human populations has markedly encouraged research on great ape Plasmodium parasites. Progress in the use of non-invasive methods has rendered investigations into wild ape populations possible. Present knowledge is mainly focused on parasite diversity and phylogeny, with still large gaps to fill on malaria parasite ecology. Understanding what malaria infection means in terms of great ape health is also an important, but challenging avenue of research and has been subject to relatively few research efforts so far. This paper reviews current knowledge on African great ape malaria and identifies gaps and future research perspectives.
RESUMO
Bacillus cereus biovar anthracis (Bcbva) is a member of the B. cereus group which carries both B. anthracis virulence plasmids, causes anthrax-like disease in various wildlife species and was described in several sub-Saharan African rainforests. Long-term monitoring of carcasses in Taï National Park, Côte d'Ivoire, revealed continuous wildlife mortality due to Bcbva in a broad range of mammalian species. While non-lethal anthrax infections in wildlife have been described for B. anthracis, nothing is known about the odds of survival following an anthrax infection caused by Bcbva. To address this gap, we present the results of a serological study of anthrax in five wildlife species known to succumb to Bcbva in this ecosystem. Specific antibodies were only detected in two out of 15 wild red colobus monkeys (Procolobus badius) and one out of 10 black-and-white colobus monkeys (Colobus polykomos), but in none of 16 sooty mangabeys (Cercocebus atys), 9 chimpanzees (Pan troglodytes verus) and 9 Maxwell's duikers (Cephalophus maxwellii). The combination of high mortality and low antibody detection rates indicates high virulence of this disease across these different mammalian species.
Assuntos
Antraz/imunologia , Antraz/mortalidade , Anticorpos Antibacterianos/sangue , Bacillus cereus/imunologia , Bacillus cereus/patogenicidade , Animais , Côte d'Ivoire/epidemiologia , Haplorrinos , Parques Recreativos , Prevalência , Ruminantes , VirulênciaRESUMO
Through full genome analyses of four atypical Bacillus cereus isolates, designated B. cereus biovar anthracis, we describe a distinct clade within the B. cereus group that presents with anthrax-like disease, carrying virulence plasmids similar to those of classic Bacillus anthracis. We have isolated members of this clade from different mammals (wild chimpanzees, gorillas, an elephant and goats) in West and Central Africa (Côte d'Ivoire, Cameroon, Central African Republic and Democratic Republic of Congo). The isolates shared several phenotypic features of both B. anthracis and B. cereus, but differed amongst each other in motility and their resistance or sensitivity to penicillin. They all possessed the same mutation in the regulator gene plcR, different from the one found in B. anthracis, and in addition, carry genes which enable them to produce a second capsule composed of hyaluronic acid. Our findings show the existence of a discrete clade of the B. cereus group capable of causing anthrax-like disease, found in areas of high biodiversity, which are possibly also the origin of the worldwide distributed B. anthracis. Establishing the impact of these pathogenic bacteria on threatened wildlife species will require systematic investigation. Furthermore, the consumption of wildlife found dead by the local population and presence in a domestic animal reveal potential sources of exposure to humans.
Assuntos
Antraz/veterinária , Bacillus anthracis/genética , Bacillus anthracis/patogenicidade , Bacillus cereus/genética , Bacillus cereus/patogenicidade , Proteínas de Bactérias/genética , Mamíferos/microbiologia , Transativadores/genética , África , Animais , Antraz/epidemiologia , Antraz/microbiologia , Bacillus anthracis/isolamento & purificação , Bacillus cereus/isolamento & purificação , DNA Bacteriano/sangue , Humanos , Mutação , Filogenia , Virulência/genéticaRESUMO
Antimicrobial resistance genes can be found in all ecosystems, including those where antibiotic selective pressure has never been exerted. We investigated resistance genes in a collection of faecal samples of wildlife (non-human primates, mice), people and domestic animals (dogs, cats) in Côte d'Ivoire; in the chimpanzee research area of Taï National Park (TNP) and adjacent villages. Single bacteria isolates were collected from antibiotic-containing agar plates and subjected to molecular analysis to detect Enterobacteriaceae isolates with plasmid-mediated genes of extended-spectrum beta-lactamases (ESBLs) and plasmid-mediated quinolone resistance (PMQR). While the prevalence of ESBL-producing E. coli in the villages was 27% in people (n = 77) and 32% in dogs (n = 38), no ESBL-producer was found in wildlife of TNP (n = 75). PMQR genes, mainly represented by qnrS1, were also present in human- and dog-originating isolates from the villages (36% and 42% in people and dogs, respectively), but no qnrS has been found in the park. In TNP, different variants of qnrB were detected in Citrobacter freundii isolates originating non-human primates and mice. In conclusion, ESBL and PMQR genes frequently found in humans and domestic animals in the villages were rather exceptional in wildlife living in the protected area. Although people enter the park, the strict biosecurity levels they are obliged to follow probably impede transmission of bacteria between them and wildlife.