Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
FASEB J ; 38(19): e70093, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39373976

RESUMO

The risk of developing type 2 diabetes (T2D) is heterogeneous among individuals with obesity. Functional decline of adipocyte precursor cells (APCs) and accumulation of senescent cells in the subcutaneous adipose tissue contributes to the progression toward T2D. LncRNAs regulate cell senescence and may be implicated in determining this abnormality in APCs. Here, we report that APCs from individuals with obesity show a gradual increase in multiple senescence markers, which worsens in parallel with the progression from normal glucose tolerance (NGT) to impaired glucose tolerance (IGT) or T2D. Transcriptomic analysis identified PANDAR as the top-ranked lncRNA differentially expressed in APCs from individuals with obesity and T2D and non-obese subjects. Q-PCR confirmed PANDAR up-regulation in APCs from individuals with obesity, at progressively increased levels in those who developed, respectively, IGT and T2D. Bisulfite sequencing and luciferase assays revealed that, in parallel with glucose tolerance deterioration, the -1317 CpG at the PANDAR promoter became hypo-methylated in obesity, resulting in enhanced PANDAR induction by p53. PANDAR silencing in senescent APCs from individuals with obesity and T2D caused repression of senescence programs and cell cycle re-entry. PANDAR transcription in white blood cells (WBCs) mirrored that in APCs. Also, individuals with obesity exhibited rescue of PANDAR transcription in WBCs following bariatric surgery, accompanied by enhanced methylation at the regulatory PANDAR -1317 CpG. In conclusion, PANDAR dysregulation is a newly identified mechanism determining the early senescence of APCs from individuals with obesity, which worsens along the progression toward T2D. In the future, PANDAR targeting may represent a valuable strategy to delay this progression.


Assuntos
Adipócitos , Senescência Celular , Metilação de DNA , Diabetes Mellitus Tipo 2 , Obesidade , Regiões Promotoras Genéticas , RNA Longo não Codificante , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adipócitos/metabolismo , Senescência Celular/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/genética , Obesidade/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
2.
Biomacromolecules ; 24(8): 3510-3521, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37531486

RESUMO

The treatment of posterior eye segment diseases through intravitreal injection requires repeated injections of an active molecule, which may be associated with serious side effects and poor patient compliance. One brilliant strategy to overcome these issues is the use of drug-loaded microparticles for sustained release, aiming at reducing the frequency of injections. Therefore, the aim of this work was to assess the safety features of poly(lactic-co-glycolic acid) (PLGA)-based, hyaluronic acid-decorated microparticles loaded with palmitoylethanolamide (PEA), citicoline (CIT), or glial-cell-derived neurotrophic factor (GDNF). Microparticles were prepared by double emulsion-solvent evaporation and fully characterized for their technological features. Microparticles possessed a satisfactory safety profile in vitro on human retinal pigment epithelial (ARPE-19) cells. Interestingly, the administration of free GDNF led to a loss of cell viability, while GDNF sustained release displayed a positive effect in that regard. In vivo results confirmed the safety profile of both empty and loaded microparticles. Overall, the outcomes suggest that the produced microparticles are promising for improving the local administration of neuroprotective molecules. Further studies will be devoted to assess the therapeutic ability of microparticles.

3.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203336

RESUMO

Improving clinical outcomes and delaying disease recrudescence in Ulcerative Colitis (UC) patients is crucial for clinicians. In addition to traditional and new pharmacological therapies that utilize biological drugs, the development of medical devices that can ameliorate UC and facilitate the remission phase should not be overlooked. Drug-based therapy requires time to be personalized and to evaluate the benefit/risk ratio. However, the increasing number of diagnosed UC cases worldwide necessitates the exploration of new strategies to enhance clinical outcomes. By incorporating medical devices alongside pharmacological treatments, clinicians can provide additional support to UC patients, potentially improving their condition and slowing down the recurrence of symptoms. Chemically identified as an azelaic acid derivative and palmitoylethanolamide (PEA) analog, adelmidrol is a potent anti-inflammatory and antioxidant compound. In this study, we aimed to evaluate the effect of an intrarectal administration of 2% adelmidrol (Ade) and 0.1% hyaluronic acid (HA) gel formulation in both the acute and resolution phase of a mouse model of colitis induced via DNBS enema. We also investigated its activity in cultured human colon biopsies isolated from UC patients in the remission phase at follow-up when exposed in vitro to a cytomix challenge. Simultaneously, with its capacity to effectively alleviate chronic painful inflammatory cystitis when administered intravesically to urological patients such as Vessilen, the intrarectal administration of Ade/HA gel has shown remarkable potential in improving the course of colitis. This treatment approach has demonstrated a reduction in the histological damage score and an increase in the expression of ZO-1 and occludin tight junctions in both in vivo studies and human specimens. By acting independently on endogenous PEA levels and without any noticeable systemic absorption, the effectiveness of Ade/HA gel is reliant on a local antioxidant mechanism that functions as a "barrier effect" in the inflamed gut. Building on the findings of this preliminary study, we are confident that the Ade/HA gel medical device holds promise as a valuable adjunct in supporting traditional anti-UC therapies.


Assuntos
Colite Ulcerativa , Colite , Cistite , Ácidos Dicarboxílicos , Ácidos Palmíticos , Humanos , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Ácido Hialurônico , Antioxidantes , Biópsia
4.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408859

RESUMO

Amyloidoses are characterized by the accumulation and aggregation of misfolded proteins into fibrils in different organs, leading to cell death and consequent organ dysfunction. The specific substitution of Leu 75 for Pro in Apolipoprotein A-I protein sequence (ApoA-I; L75P-ApoA-I) results in late onset amyloidosis, where deposition of extracellular protein aggregates damages the normal functions of the liver. In this work, we describe that the autophagic process is inhibited in the presence of the L75P-ApoA-I amyloidogenic variant in stably transfected human hepatocyte carcinoma cells. The L75P-ApoA-I amyloidogenic variant alters the redox status of the cells, resulting into excessive mitochondrial stress and consequent cell death. Moreover, L75P-ApoA-I induces an impairment of the autophagic flux. Pharmacological induction of autophagy or transfection-enforced overexpression of the pro-autophagic transcription factor EB (TFEB) restores proficient proteostasis and reduces oxidative stress in these experimental settings, suggesting that pharmacological stimulation of autophagy could be a promising target to alleviate ApoA-I amyloidosis.


Assuntos
Amiloidose , Amiloidose de Cadeia Leve de Imunoglobulina , Amiloidose/genética , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Autofagia/genética , Humanos , Agregados Proteicos
5.
Int J Mol Sci ; 22(6)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799405

RESUMO

Palmitoylethanolamide (PEA) is an N-acylethanolamide produced on-demand by the enzyme N-acylphosphatidylethanolamine-preferring phospholipase D (NAPE-PLD). Being a key member of the larger family of bioactive autacoid local injury antagonist amides (ALIAmides), PEA significantly improves the clinical and histopathological stigmata in models of ulcerative colitis (UC). Despite its safety profile, high PEA doses are required in vivo to exert its therapeutic activity; therefore, PEA has been tested only in animals or human biopsy samples, to date. To overcome these limitations, we developed an NAPE-PLD-expressing Lactobacillus paracasei F19 (pNAPE-LP), able to produce PEA under the boost of ultra-low palmitate supply, and investigated its therapeutic potential in a murine model of UC. The coadministration of pNAPE-LP and palmitate led to a time-dependent release of PEA, resulting in a significant amelioration of the clinical and histological damage score, with a significantly reduced neutrophil infiltration, lower expression and release of pro-inflammatory cytokines and oxidative stress markers, and a markedly improved epithelial barrier integrity. We concluded that pNAPE-LP with ultra-low palmitate supply stands as a new method to increase the in situ intestinal delivery of PEA and as a new therapeutic able of controlling intestinal inflammation in inflammatory bowel disease.


Assuntos
Amidas/metabolismo , Colite/tratamento farmacológico , Etanolaminas/metabolismo , Inflamação/tratamento farmacológico , Lacticaseibacillus paracasei/genética , Ácidos Palmíticos/metabolismo , Amidas/farmacologia , Animais , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Etanolaminas/farmacologia , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Lacticaseibacillus paracasei/metabolismo , Engenharia Metabólica , Camundongos , Infiltração de Neutrófilos/efeitos dos fármacos , Ácidos Palmíticos/farmacologia
6.
Pharmacol Res ; 161: 105249, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33068730

RESUMO

The molecular complexity of human breast cancer (BC) renders the clinical management of the disease challenging. Long non-coding RNAs (lncRNAs) are promising biomarkers for BC patient stratification, early detection, and disease monitoring. Here, we identified the involvement of the long intergenic non-coding RNA 01087 (LINC01087) in breast oncogenesis. LINC01087 appeared significantly downregulated in triple-negative BCs (TNBCs) and upregulated in the luminal BC subtypes in comparison to mammary samples from cancer-free women and matched normal cancer pairs. Interestingly, deregulation of LINC01087 allowed to accurately distinguish between luminal and TNBC specimens, independently of the clinicopathological parameters, and of the histological and TP53 or BRCA1/2 mutational status. Moreover, increased expression of LINC01087 predicted a better prognosis in luminal BCs, while TNBC tumors that harbored lower levels of LINC01087 were associated with reduced relapse-free survival. Furthermore, bioinformatics analyses were performed on TNBC and luminal BC samples and suggested that the putative tumor suppressor activity of LINC01087 may rely on interferences with pathways involved in cell survival, proliferation, adhesion, invasion, inflammation and drug sensitivity. Altogether, these data suggest that the assessment of LINC01087 deregulation could represent a novel, specific and promising biomarker not only for the diagnosis and prognosis of luminal BC subtypes and TNBCs, but also as a predictive biomarker of pharmacological interventions.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , RNA Longo não Codificante/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Células MCF-7 , Metástase Neoplásica , Recidiva Local de Neoplasia , Intervalo Livre de Progressão , Mapas de Interação de Proteínas , RNA Longo não Codificante/genética , Transdução de Sinais , Fatores de Tempo , Transcriptoma , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
7.
Int J Mol Sci ; 21(19)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987896

RESUMO

The response to neoadjuvant chemoradiation (nCRT) is a critical step in the management of locally advanced rectal cancer (LARC) patients. Only a minority of LARC patients responds completely to neoadjuvant treatments, thus avoiding invasive radical surgical resection. Moreover, toxic side effects can adversely affect patients' survival. The difficulty in separating in advances responder from non-responder patients affected by LARC highlights the need for valid biomarkers that guide clinical decision-making. In this context, microRNAs (miRNAs) seem to be promising candidates for predicting LARC prognosis and/or therapy response, particularly due to their stability, facile detection, and disease-specific expression in human tissues, blood, serum, or urine. Although a considerable number of studies involving potential miRNA predictors to nCRT have been conducted over the years, to date, the identification of the perfect miRNA signatures or single miRNA, as well as their use in the clinical practice, is still representing a challenge for the management of LARC patients. In this review, we will first introduce LARC and its difficult management. Then, we will trace the scientific history and the key obstacles for the identification of specific miRNAs that predict responsiveness to nCRT. There is a high potential to identify non-invasive biomarkers that circulate in the human bloodstream and that might indicate the LARC patients who benefit from the watch-and-wait approach. For this, we will critically evaluate recent advances dealing with cell-free nucleic acids including miRNAs and circulating tumor cells as prognostic or predictive biomarkers.


Assuntos
Biomarcadores Tumorais/metabolismo , MicroRNAs/metabolismo , Terapia Neoadjuvante , Células Neoplásicas Circulantes/metabolismo , Neoplasias Retais , Humanos , Prognóstico , Neoplasias Retais/diagnóstico , Neoplasias Retais/metabolismo , Neoplasias Retais/terapia
8.
Biomolecules ; 13(3)2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36979504

RESUMO

As of October 2022, the COVID-19 pandemic continues to pose a major public health conundrum, with increased rates of symptomatic infections in vaccinated individuals. An ideal vaccine candidate for the prevention of outbreaks should be rapidly scalable, easy to administer, and able to elicit a potent mucosal immunity. Towards this aim, we proposed an engineered Escherichia coli (E. coli) Nissle 1917 (EcN) strain with SARS-CoV-2 spike protein (SP)-coding plasmid, which was able to expose SP on its cellular surface by a hybridization with the adhesin involved in diffuse adherence 1 (AIDA1). In this study, we presented the effectiveness of a 16-week intragastrically administered, engineered EcN in producing specific systemic and mucosal immunoglobulins against SARS-CoV-2 SP in mice. We observed a time-dependent increase in anti-SARS-CoV-2 SP IgG antibodies in the sera at week 4, with a titre that more than doubled by week 12 and a stable circulating titre by week 16 (+309% and +325% vs. control; both p < 0.001). A parallel rise in mucosal IgA antibody titre in stools, measured via intestinal and bronchoalveolar lavage fluids of the treated mice, reached a plateau by week 12 and until the end of the immunization protocol (+300, +47, and +150%, at week 16; all p < 0.001 vs. controls). If confirmed in animal models of infection, our data indicated that the engineered EcN may be a potential candidate as an oral vaccine against COVID-19. It is safe, inexpensive, and, most importantly, able to stimulate the production of both systemic and mucosal anti-SARS-CoV-2 spike-protein antibodies.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Animais , Camundongos , Glicoproteína da Espícula de Coronavírus/genética , Escherichia coli/genética , Vacinas contra COVID-19 , Formação de Anticorpos , Pandemias , COVID-19/prevenção & controle , SARS-CoV-2 , Imunização/métodos , Anticorpos Antivirais
9.
J Immunother Cancer ; 11(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37344100

RESUMO

BACKGROUND: Progress in breast cancer (BC) research relies on the availability of suitable cell lines that can be implanted in immunocompetent laboratory mice. The best studied mouse strain, C57BL/6, is also the only one for which multiple genetic variants are available to facilitate the exploration of the cancer-immunity dialog. Driven by the fact that no hormone receptor-positive (HR+) C57BL/6-derived mammary carcinoma cell lines are available, we decided to establish such cell lines. METHODS: BC was induced in female C57BL/6 mice using a synthetic progesterone analog (medroxyprogesterone acetate, MPA) combined with a DNA damaging agent (7,12-dimethylbenz[a]anthracene, DMBA). Cell lines were established from these tumors and selected for dual (estrogen+progesterone) receptor positivity, as well as transplantability into C57BL/6 immunocompetent females. RESULTS: One cell line, which we called B6BC, fulfilled these criteria and allowed for the establishment of invasive estrogen receptor-positive (ER+) tumors with features of epithelial to mesenchymal transition that were abundantly infiltrated by myeloid immune populations but scarcely by T lymphocytes, as determined by single-nucleus RNA sequencing and high-dimensional leukocyte profiling. Such tumors failed to respond to programmed cell death-1 (PD-1) blockade, but reduced their growth on treatment with ER antagonists, as well as with anthracycline-based chemotherapy, which was not influenced by T-cell depletion. Moreover, B6BC-derived tumors reduced their growth on CD11b blockade, indicating tumor sustainment by myeloid cells. The immune environment and treatment responses recapitulated by B6BC-derived tumors diverged from those of ER+ TS/A cell-derived tumors in BALB/C mice, and of ER- E0771 cell-derived and MPA/DMBA-induced tumors in C57BL/6 mice. CONCLUSIONS: B6BC is the first transplantable HR+ BC cell line derived from C57BL/6 mice and B6BC-derived tumors recapitulate the complex tumor microenvironment of locally advanced HR+ BC naturally resistant to PD-1 immunotherapy.


Assuntos
Carcinoma , Progesterona , Camundongos , Feminino , Animais , Transição Epitelial-Mesenquimal , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Microambiente Tumoral
10.
Biomedicines ; 10(3)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35327527

RESUMO

Due to the high heterogeneity and initially asymptomatic nature of breast cancer (BC), the management of this disease depends on imaging together with immunohistochemical and molecular evaluations. These tests allow early detection of BC and patient stratification as they guide clinicians in prognostication and treatment decision-making. Circular RNAs (circRNAs) represent a class of newly identified long non-coding RNAs. These molecules have been described as key regulators of breast carcinogenesis and progression. Moreover, circRNAs play a role in drug resistance and are associated with clinicopathological features in BC. Accumulating evidence reveals a clinical interest in deregulated circRNAs as diagnostic, prognostic and predictive biomarkers. Furthermore, due to their covalently closed structure, circRNAs are highly stable and easily detectable in body fluids, making them ideal candidates for use as non-invasive biomarkers. Herein, we provide an overview of the biogenesis and pleiotropic functions of circRNAs, and report on their clinical relevance in BC.

11.
Cancers (Basel) ; 14(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36497462

RESUMO

(1) Background: Long non-coding RNAs may constitute epigenetic biomarkers for the diagnosis, prognosis, and therapeutic response of a variety of tumors. In this context, we aimed at assessing the diagnostic and prognostic value of the recently described long intergenic non-coding RNA 01087 (LINC01087) in human cancers. (2) Methods: We studied the expression of LINC01087 across 30 oncological indications by interrogating public resources. Data extracted from the TCGA and GTEx databases were exploited to plot receiver operating characteristic curves (ROC) and determine the diagnostic performance of LINC01087. Survival data from TCGA and KM-Plotter directories allowed us to graph Kaplan-Meier curves and evaluate the prognostic value of LINC01087. To investigate the function of LINC01087, gene ontology (GO) annotation and Kyoto Encyclopedia of Gene and Genomes (KEGG) enrichment analyses were performed. Furthermore, interactions between LINC01087 and both miRNA and mRNA were studied by means of bioinformatics tools. (3) Results: LINC01087 was significantly deregulated in 7 out of 30 cancers, showing a predominant upregulation. Notably, it was overexpressed in breast (BC), esophageal (ESCA), and ovarian (OV) cancers, as well as lung squamous cell carcinoma (LUSC), stomach adenocarcinoma (STAD), and uterine carcinosarcoma (UCS). By contrast, LINC01087 displayed downregulation in testicular germ cell tumors (TGCT). ROC curve analyses identified LINC01087 as a potential diagnostic indicator in BC, ESCA, OV, STAD, and TGCT. Moreover, high and low expression of LINC01087 predicted a favorable prognosis in BC and papillary cell carcinoma, respectively. In silico analyses indicated that deregulation of LINC01087 in cancer was associated with a modulation of genes related to ion channel, transporter, and peptide receptor activity. (4) Conclusions: the quantification of an altered abundance of LINC01087 in tissue specimens might be clinically useful for the diagnosis and prognosis of some hormone-related tumors, including BC, OV, and TGCT, as well as other cancer types such as ESCA and STAD. Moreover, our study revealed the potential of LINC01087 (and perhaps other lncRNAs) to regulate neuroactive molecules in cancer.

12.
Diagnostics (Basel) ; 11(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34679607

RESUMO

Duchenne/Becker muscular dystrophy (DMD/BMD) is an X-linked neuromuscular disease due to pathogenic sequence variations in the dystrophin (DMD) gene, one of the largest human genes. More than 70% of DMD gene defects result from genomic rearrangements principally leading to large deletions, while the remaining are small nucleotide variants, including nonsense and missense variants, small insertions/deletions or splicing alterations. Considering the large size of the gene and the wide mutational spectrum, the comprehensive molecular diagnosis of DMD/BMD is complex and may require several laboratory methods, thus increasing the time and costs of the analysis. In an attempt to simplify DMD/BMD molecular diagnosis workflow, we tested an NGS method suitable for the detection of all the different types of genomic variations that may affect the DMD gene. Forty previously analyzed patients were enrolled in this study and re-analyzed using the next generation sequencing (NGS)-based single-step procedure. The NGS results were compared with those from multiplex ligation-dependent probe amplification (MLPA)/multiplex PCR and/or Sanger sequencing. Most of the previously identified deleted/duplicated exons and point mutations were confirmed by NGS and 1 more pathogenic point mutation (a nonsense variant) was identified. Our results show that this NGS-based strategy overcomes limitations of traditionally used methods and is easily transferable to routine diagnostic procedures, thereby increasing the diagnostic power of DMD molecular analysis.

13.
Sci Rep ; 11(1): 9652, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958669

RESUMO

No clear consensus on the need to perform an intracorporeal anastomosis (IA) after laparoscopic right colectomy is currently available. One of the potential benefits of intracorporeal anastomosis may be a reduction in surgical stress. Herein, we evaluated the surgical stress response and the metabolic response in patients who underwent right colonic resection for colon cancer. Fifty-nine patients who underwent laparoscopic resection for right colon cancer were randomized to receive an intracorporeal or an extracorporeal anastomosis (EA). Data including demographics (age, sex, BMI and ASA score), pathological (AJCC tumour stage and tumour localization) and surgical results were recorded. Moreover, to determine the levels of the inflammatory response, mediators, such as C-reactive protein (CRP), tumour necrosis factor (TNF), interleukin 1ß (IL-1ß), IL-6, IL-10, and IL-13, were evaluated. Similarly, cortisol and insulin levels were evaluated as hormonal responses to surgical stress. We found that the proinflammatory mediator IL-6, CRP, TNF and IL-1ß levels, were significantly reduced in IA compared to EA. Concurrently, an improved profile of the anti-inflammatory cytokines IL-10 and IL-13 was observed in the IA group. Relative to the hormone response to surgical stress, cortisol was increased in patients who underwent EA, while insulin was reduced in the EA group. Based on these results, surgical stress and metabolic response to IA justify advocating the adoption of a totally laparoscopic approach when performing a right colectomy for cancer.This trial is registered on ClinicalTrials.gov (ID: NCT03422588).


Assuntos
Colectomia/efeitos adversos , Laparoscopia/efeitos adversos , Idoso , Anastomose Cirúrgica/efeitos adversos , Anastomose Cirúrgica/métodos , Biomarcadores/sangue , Proteína C-Reativa/análise , Neoplasias do Colo/cirurgia , Feminino , Humanos , Inflamação/sangue , Inflamação/etiologia , Interleucinas/sangue , Masculino , Fator de Necrose Tumoral alfa/sangue
14.
Diagnostics (Basel) ; 10(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348555

RESUMO

Cystic fibrosis (CF) is a lifelong disorder affecting 1 in 3500 live births worldwide. It is a monogenetic autosomal recessive disease caused by loss-of-function mutations in the gene encoding the chloride channel cystic fibrosis transmembrane conductance regulator (CFTR), the impairment of which leads to ionic disequilibria in exocrine organs. This translates into a chronic multisystemic disease characterized by airway obstruction, respiratory infections, and pancreatic insufficiency as well as hepatobiliary and gastrointestinal dysfunction. Molecular characterization of the mutational heterogeneity of CFTR (affected by more than 2000 variants) improved the understanding and management of CF. However, these CFTR variants are linked to different clinical manifestations and phenotypes, and they affect response to treatments. Expanding evidence suggests that multisystemic disease affects CF pathology via impairing either CFTR or proteins regulated by CFTR. Thus, altering the expression of miRNAs in vivo could constitute an appealing strategy for developing new CF therapies. In this review, we will first describe the pathophysiology and clinical management of CF. Then, we will summarize the current knowledge on altered miRNAs in CF patients, with a focus on the miRNAs involved in the deregulation of CFTR and in the modulation of inflammation. We will highlight recent findings on the potential utility of measuring circulating miRNAs in CF as diagnostic, prognostic, and predictive biomarkers. Finally, we will provide an overview on potential miRNA-based therapeutic approaches.

15.
Open Med (Wars) ; 15(1): 1087-1095, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33336065

RESUMO

In 2010, serrated polyps (SP) of the colon have been included in the WHO classification of digestive tumors. Since then a large corpus of evidence focusing on these lesions are available in the literature. This review aims to analyze the present data on the epidemiological and molecular aspects of SP. Hyperplastic polyps (HPs) are the most common subtype of SP (70-90%), with a minimal or null risk of malignant transformation, contrarily to sessile serrated lesions (SSLs) and traditional serrated adenomas (TSAs), which represent 10-20% and 1% of adenomas, respectively. The malignant transformation, when occurs, is supported by a specific genetic pathway, known as the serrated-neoplasia pathway. The time needed for malignant transformation is not known, but it may occur rapidly in some lesions. Current evidence suggests that a detection rate of SP ≥15% should be expected in a population undergoing screening colonoscopy. There are no differences between primary colonoscopies and those carried out after positive occult fecal blood tests, as this screening test fails to identify SP, which rarely bleed. Genetic similarities between SP and interval cancers suggest that these cancers could arise from missed SP. Hence, the detection rate of serrated-lesions should be evaluated as a quality indicator of colonoscopy. There is a lack of high-quality longitudinal studies analyzing the long-term risk of developing colorectal cancer (CRC), as well as the cancer risk factors and molecular tissue biomarkers. Further studies are needed to define an evidence-based surveillance program after the removal of SP, which is currently suggested based on experts' opinions.

16.
Cancers (Basel) ; 11(7)2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31330830

RESUMO

Colorectal cancer (CRC) is a leading cause of cancer death worldwide. It includes different subtypes that differ in their clinical and prognostic features. In the past decade, in addition to the conventional adenoma-carcinoma model, an alternative multistep mechanism of carcinogenesis, namely the "serrated pathway", has been described. Approximately, 15 to 30% of all CRCs arise from neoplastic serrated polyps, a heterogeneous group of lesions that are histologically classified into three morphologic categories: hyperplastic polyps, sessile serrated adenomas/polyps, and the traditional serrated adenomas/polyps. Serrated polyps are characterized by genetic (BRAF or KRAS mutations) and epigenetic (CpG island methylator phenotype (CIMP)) alterations that cooperate to initiate and drive malignant transformation from normal colon mucosa to polyps, and then to CRC. The high heterogeneity of the serrated lesions renders their diagnostic and pathological interpretation difficult. Hence, novel genetic and epigenetic biomarkers are required for better classification and management of CRCs. To date, several molecular alterations have been associated with the serrated polyp-CRC sequence. In addition, the gut microbiota is emerging as a contributor to/modulator of the serrated pathway. This review summarizes the state of the art of the genetic, epigenetic and microbiota signatures associated with serrated CRCs, together with their clinical implications.

17.
PLoS One ; 12(6): e0180509, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28666016

RESUMO

AIM: Targeted molecular probes have been used to detect sporadic colonic dysplasia during confocal laser endomicroscopy (CLE) with promising results. This is a feasibility pilot study aiming to assess the potential role of CLE combined with a fluorescent-labeled peptide to stain and detect dysplasia associated with Ulcerative Colitis. METHOD: A phage-derived heptapeptide with predicted high binding affinity for dysplastic tissue, was synthesized and labeled with fluorescein. Eleven lesions with suspected dysplasia at endoscopy were excised from nine patients with long-standing ulcerative colitis. Specimens were sprayed with the peptide and examined by CLE. The CLE images were then compared to the corresponding histological sections. RESULTS: At definitive histology, 4 lesions were diagnosed as inflammatory polyps, 6 as dysplastic lesions and one as invasive cancer. In inflammatory polyps, the fluorescence signal came from peri-cryptal spaces and crypt lumen due to passive accumulation of the peptide in these areas. Dysplasia was associated with active binding of the peptide to dysplastic colonocytes. CONCLUSION: Ex vivo staining of ulcerative colitis-associated dysplasia using a fluorescent labeled molecular probe and CLE is feasible. In vivo studies on larger populations are required to evaluate the safety and the effective contribution of molecular probes in cancer surveillance of ulcerative colitis.


Assuntos
Colite Ulcerativa/diagnóstico , Microscopia Confocal/métodos , Sequência de Aminoácidos , Colite Ulcerativa/patologia , Corantes Fluorescentes/análise , Humanos , Peptídeos/análise , Peptídeos/química , Projetos Piloto
18.
Biomed Res Int ; 2015: 161648, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26665001

RESUMO

Next-generation sequencing (NGS) technologies have greatly impacted on every field of molecular research mainly because they reduce costs and increase throughput of DNA sequencing. These features, together with the technology's flexibility, have opened the way to a variety of applications including the study of the molecular basis of human diseases. Several analytical approaches have been developed to selectively enrich regions of interest from the whole genome in order to identify germinal and/or somatic sequence variants and to study DNA methylation. These approaches are now widely used in research, and they are already being used in routine molecular diagnostics. However, some issues are still controversial, namely, standardization of methods, data analysis and storage, and ethical aspects. Besides providing an overview of the NGS-based approaches most frequently used to study the molecular basis of human diseases at DNA level, we discuss the principal challenges and applications of NGS in the field of human genomics.


Assuntos
Doenças Genéticas Inatas/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metilação de DNA/genética , Bases de Dados Genéticas , Doenças Genéticas Inatas/patologia , Genoma Humano , Humanos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA