RESUMO
The SARS-CoV-2 pandemic has resulted in unprecedented health and economic losses. Children generally present with less severe disease from this virus compared with adults, yet neonates and children with COVID-19 can require hospitalization, and older children can develop severe complications, such as the multisystem inflammatory syndrome, resulting in >1500 deaths in children from COVID-19 since the onset of the pandemic. The introduction of effective SARS-CoV-2 vaccines in school-age children and adult populations combined with the emergence of new, more highly transmissible SARS-CoV-2 variants has resulted in a proportional increase of infections in young children. Here, we discuss (1) the current knowledge on pediatric SARS-CoV-2 infection and pathogenesis in comparison with adults, (2) the data on vaccine immunogenicity and efficacy in children, and (3) the benefits of early life SARS-CoV-2 vaccination.
Assuntos
COVID-19 , SARS-CoV-2 , Adolescente , COVID-19/complicações , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Criança , Pré-Escolar , Humanos , Recém-Nascido , Síndrome de Resposta Inflamatória Sistêmica , VacinaçãoRESUMO
BACKGROUND: Marijuana's putative anti-inflammatory properties may benefit HIV-associated comorbidities. How recreational marijuana use affects gene expression in peripheral blood cells (PBC) among youth with HIV-1 (YWH) is unknown. APPROACH: YWH with defined substance use (n = 54) receiving similar antiretroviral therapy (ART) were assigned to one of four analysis groups: YWH with detectable plasma HIV-1 (> 50 RNA copies/ml) who did not use substances (H+V+S-), and YWH with undetectable plasma HIV-1 who did not use substances (H+V-S-), or used marijuana alone (H+V-S+[M]), or marijuana in combination with tobacco (H+V-S+[M/T]). Non-substance using youth without HIV infection (H-S-, n = 25) provided a reference group. PBC mRNA was profiled by Affymetrix GeneChip Human Genome U133 Plus 2.0 Array. Differentially expressed genes (DEG) within outcome groups were identified by Significance Analysis of Microarrays and used for Hierarchical Clustering, Principal Component Analysis, and Ingenuity Pathways Analysis. RESULTS: HIV-1 replication resulted in > 3000 DEG involving 27 perturbed pathways. Viral suppression reduced DEG to 313, normalized all 27 pathways, and down-regulated two additional pathways, while marijuana use among virally suppressed YWH resulted in 434 DEG and no perturbed pathways. Relative to H+V-S-, multiple DEG normalized in H+V-S+[M]. In contrast, H+V-S+[M/T] had 1140 DEG and 10 dysregulated pathways, including multiple proinflammatory genes and six pathways shared by H+V+S-. CONCLUSIONS: YWH receiving ART display unique transcriptome bioprofiles based on viral replication and substance use. In the context of HIV suppression, marijuana use, alone or combined with tobacco, has opposing effects on inflammatory gene expression.
Assuntos
Cannabis , Infecções por HIV , HIV-1 , Transtornos Relacionados ao Uso de Substâncias , Produtos do Tabaco , Adolescente , Infecções por HIV/tratamento farmacológico , HIV-1/genética , HumanosRESUMO
Daily burden and clinical toxicities associated with antiretroviral therapy (ART) emphasize the need for alternative strategies to induce long-term human immunodeficiency virus (HIV) remission upon ART cessation. Broadly neutralizing antibodies (bNAbs) can both neutralize free virions and mediate effector functions against infected cells and therefore represent a leading immunotherapeutic approach. To increase potency and breadth, as well as to limit the development of resistant virus strains, it is likely that bNAbs will need to be administered in combination. It is therefore critical to identify bNAb combinations that can achieve robust polyfunctional antiviral activity against a high number of HIV strains. In this study, we systematically assessed the abilities of single bNAbs and triple bNAb combinations to mediate robust polyfunctional antiviral activity against a large panel of cross-clade simian-human immunodeficiency viruses (SHIVs), which are commonly used as tools for validation of therapeutic strategies targeting the HIV envelope in nonhuman primate models. We demonstrate that most bNAbs are capable of mediating both neutralizing and nonneutralizing effector functions against cross-clade SHIVs, although the susceptibility to V3 glycan-specific bNAbs is highly strain dependent. Moreover, we observe a strong correlation between the neutralization potencies and nonneutralizing effector functions of bNAbs against the transmitted/founder SHIV CH505. Finally, we identify several triple bNAb combinations comprising of CD4 binding site-, V2-glycan-, and gp120-gp41 interface-targeting bNAbs that are capable of mediating synergistic polyfunctional antiviral activities against multiple clade A, B, C, and D SHIVs.IMPORTANCE Optimal bNAb immunotherapeutics will need to mediate multiple antiviral functions against a broad range of HIV strains. Our systematic assessment of triple bNAb combinations against SHIVs will identify bNAbs with synergistic, polyfunctional antiviral activity that will inform the selection of candidate bNAbs for optimal combination designs. The identified combinations can be validated in vivo in future passive immunization studies using the SHIV challenge model.
Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Amplamente Neutralizantes/uso terapêutico , Anticorpos Anti-HIV/uso terapêutico , Mutação , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos , Humanos , Imunização Passiva , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Produtos do Gene env do Vírus da Imunodeficiência Humana/genéticaRESUMO
Older age could be a risk factor for suboptimal CD4+ T-cell recovery in HIV-infected patients despite successful viral suppression. However, evaluation of this effect could be confounded by age-related immune processes such as decreased thymus output, increased immune activation and exhaustion. Here, we established a semi-mechanistic population model simultaneously describing naïve and memory CD4+ T-cell trajectories in 122 participants. Covariate analysis accounting for immune activation showed that older age was significantly associated with faster apparent elimination rate of the naïve T-cells. In addition, female sex predicted slower apparent elimination rate of memory T-cells. Simulations showed that the median maximal CD4+ T-cell count on ART treatment was 593 cells/µL (IQR 442-794) in patients aged 50 years or above and 738 cells/µL (IQR 548-1002) in patients aged 18-35 years. The differences in the percentage of subjects achieving sufficient immune reconstitution (CD4+ T-cell count> 500 cells/µL) between the two age groups were 15, 21 and 26% at year 1, 4 years and steady state, respectively, suggesting that advanced age may have a greater impact on long-term CD4+ T-cell recovery.
RESUMO
Mother-to-child transmission of human immunodeficiency virus type 1 (HIV-1) via breastfeeding is responsible for nearly half of new infections of children with HIV. Although innate lymphoid cells (ILC) and natural killer (NK) cells are found throughout the oral mucosae, the effects of HIV/simian-human immunodeficiency virus (SHIV) in these tissues are largely unknown. To better understand the mechanics of postnatal transmission, we performed a comprehensive study of simian immunodeficiency virus (SIV)/SHIV-infected infant rhesus macaques (RM) and tracked changes in frequency, trafficking, and function of group 3 ILC (ILC3) and NK cells using polychromatic flow cytometry and cell stimulation assays in colon, tonsil, and oral lymph node samples. Infection led to a 3-fold depletion of ILC3 in the colon and an increase in the levels of NK cells in tonsils and oral lymph nodes. ILC3 and NK cells exhibited alterations in their trafficking repertoires as a result of infection, with increased expression of CD103 in colon NK cells and curtailment of CXCR3, and a significant decrease in α4ß7 expression in colon ILC3. SPICE analyses revealed that ILC3 and NK cells displayed distinct functional profiles by tissue in naive samples. Infection perturbed these profiles, with a nearly total loss of interleukin-22 (IL-22) production in the tonsil and colon; an increase in the levels of CD107a, gamma interferon (IFN-γ), and tumor necrosis factor alpha (TNF-α) from ILC3; and an increase in the levels of CD107a, macrophage inflammatory protein 1 beta (MIP-1ß), and TNF-α from NK cells. Collectively, these data reveal that lentivirus infection alters the frequencies, receptor repertoires, and functions of innate cells in the oral and gut mucosa of infants. Further study will be required to delineate the full extent of the effect that these changes have on oral and gut homeostasis, SHIV/SIV pathogenesis, and oral opportunistic disease.IMPORTANCE Vertical transmission of HIV from mother to child accounts for many of the new cases seen worldwide. There is currently no vaccine to mitigate this transmission, and there has been limited research on the effects that lentiviral infection has on the innate immune system in oral tissues of infected children. To fill this knowledge gap, our laboratory studied infant rhesus macaques to evaluate how acute SIV/SHIV infections impacted ILC3 and NK cells, which are immune cells critical for mucosal homeostasis and antimicrobial defense. Our data revealed that SIV/SHIV infection led to a depletion of ILC3 and an increase of NK cells and to a functional shift from a homeostatic to a multifunctional proinflammatory state. Taking the results together, we describe how lentiviral infection perturbs the oral and gastrointestinal mucosae of infant macaques through alterations of resident innate immune cells giving rise to chronic inflammation and potentially exacerbating morbidity and mortality in children living with HIV.
Assuntos
Imunidade Inata , Células Matadoras Naturais/imunologia , Macaca mulatta/virologia , Mucosa/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Trato Gastrointestinal , Infecções por HIV/imunologia , HIV-1/imunologia , Transmissão Vertical de Doenças Infecciosas , Interferon gama/imunologia , Interleucinas/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Carga Viral , Interleucina 22RESUMO
Pediatric HIV infection remains a global health crisis with an estimated 150,000 new mother-to-child (MTCT) infections each year. Antiretroviral therapy (ART) has improved childhood survival, but only an estimated 53% of children worldwide have access to treatment. Adding to the health crisis is the neurological impact of HIV on the developing brain, in particular cognitive and executive function, which persists even when ART is available. Imaging studies suggest structural, connectivity, and functional alterations in perinatally HIV-infected youth. However, the paucity of histological data limits our ability to identify specific cortical regions that may underlie the clinical manifestations. Utilizing the pediatric simian immunodeficiency virus (SIV) infection model in infant macaques, we have previously shown that early-life SIV infection depletes the neuronal population in the hippocampus. Here, we expand on these previous studies to investigate the dorsolateral prefrontal cortex (dlPFC). A total of 11 ART-naïve infant rhesus macaques (Macaca mulatta) from previous studies were retrospectively analyzed. Infant macaques were either intravenously (IV) inoculated with highly virulent SIVmac251 at ~1 week of age and monitored for 6-10 weeks or orally challenged with SIVmac251 from week 9 of age onwards with a monitoring period of 10-23 weeks post-infection (19-34 weeks of age), and SIV-uninfected controls were euthanized at 16-17 weeks of age. Both SIV-infected groups show a significant loss of neurons along with evidence of ongoing neuronal death. Oral- and IV-infected animals showed a similar neuronal loss which was negatively correlated to chronic viremia levels as assessed by an area under the curve (AUC) analysis. The loss of dlPFC neurons may contribute to the rapid neurocognitive decline associated with pediatric HIV infection.
Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Adolescente , Animais , Animais Recém-Nascidos , Criança , Córtex Pré-Frontal Dorsolateral , Feminino , Humanos , Transmissão Vertical de Doenças Infecciosas , Macaca mulatta , Neurônios , Estudos RetrospectivosRESUMO
BACKGROUND: Maternal HIV increases the risk of adverse birth outcomes including preterm birth, fetal growth restriction, and stillbirth, but the biological mechanism(s) underlying this increased risk are not well understood. We hypothesized that maternal HIV may lead to adverse birth outcomes through an imbalance in angiogenic factors involved in the vascular endothelial growth factor (VEGF) signaling pathway. METHODS: In a case-control study nested within an ongoing cohort in Zambia, our primary outcomes were serum concentrations of VEGF-A, soluble endoglin (sEng), placental growth factor (PlGF), and soluble fms-like tyrosine kinase-1 (sFLT-1). These were measured in 57 women with HIV (cases) and 57 women without HIV (controls) before 16 gestational weeks. We used the Wilcoxon rank-sum and linear regression controlling for maternal body mass index (BMI) and parity to assess the difference in biomarker concentrations between cases and controls. We also used logistic regression to test for associations between biomarker concentration and adverse pregnancy outcomes (preeclampsia, preterm birth, small for gestational age, stillbirth, and a composite of preterm birth or stillbirth). RESULTS: Compared to controls, women with HIV had significantly lower median concentrations of PlGF (7.6 vs 10.2 pg/mL, p = 0.02) and sFLT-1 (1647.9 vs 2055.6 pg/mL, p = 0.04), but these findings were not confirmed in adjusted analysis. PlGF concentration was lower among women who delivered preterm compared to those who delivered at term (6.7 vs 9.6 pg/mL, p = 0.03) and among those who experienced the composite adverse birth outcome (6.2 vs 9.8 pg/mL, p = 0.02). Median sFLT-1 concentration was lower among participants with the composite outcome (1621.0 vs 1945.9 pg/mL, p = 0.04), but the association was not significant in adjusted analysis. sEng was not associated with either adverse birth outcomes or HIV. VEGF-A was undetectable by Luminex in all specimens. CONCLUSIONS: We present preliminary findings that HIV is associated with a shift in the VEGF signaling pathway in early pregnancy, although adjusted analyses were inconclusive. We confirm an association between angiogenic biomarkers and adverse birth outcomes in our population. Larger studies are needed to further elucidate the role of HIV on placental angiogenesis and adverse birth outcomes.
Assuntos
Endoglina/sangue , Infecções por HIV/sangue , Fator de Crescimento Placentário/sangue , Complicações Infecciosas na Gravidez/sangue , Resultado da Gravidez/epidemiologia , Fator A de Crescimento do Endotélio Vascular/sangue , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/sangue , Adulto , Indutores da Angiogênese , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Humanos , Placenta/irrigação sanguínea , Gravidez , Nascimento Prematuro/epidemiologia , Zâmbia/epidemiologiaRESUMO
The altered immune states of aging and HIV infection may affect intracellular metabolism of tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC); increased cellular senescence decreases FTC-triphosphate (FTCtp) concentrations. The effects of age and inflammation on the ratio of intracellular metabolites (IMs; tenofovir diphosphate [TFVdp] and FTCtp) to their endogenous nucleotides (ENs; dATP and dCTP), a potential treatment efficacy marker, were assessed among participants of the Women's Interagency HIV Study (WIHS), who ranged from 25 to 75 years. Samples from women receiving TDF-FTC with viral loads of <200 copies/ml were dichotomized by age at collection into two groups (≤45 years and ≥60 years). IM/EN concentrations were measured in peripheral blood mononuclear cell (PBMC) pellets; interleukin-6 (IL-6) and sCD163 were measured in plasma; senescent CD8+ T cells were measured in viable PBMCs. The TFVdp:dATP and FTCtp:dCTP ratios had statistically significantly different distributions in older and younger women (log-rank test, P = 0.0023 and P = 0.032, respectively); in general, IM and EN concentrations were higher in the older women. After adjusting for potential confounders, these findings were not significant. In women aged ≤45 years, TFVdp was negatively associated with IL-6 and sCD163, while FTCtp was positively associated with sCD163 and IL-6 in women aged ≥60 years. Body mass index (BMI) was positively associated with IL-6 in both age groups and negatively associated with TFVdp in women aged ≤45 years. After adjustment, age remained significant for sCD163, while black race, BMI, and renal function remained significant for several IMs and ENs, suggesting that factors associated with aging, but not age itself, govern intracellular TDF-FTC pharmacology.
Assuntos
Fármacos Anti-HIV , Infecções por HIV , Adulto , Idoso , Fármacos Anti-HIV/uso terapêutico , Linfócitos T CD8-Positivos , Emtricitabina/uso terapêutico , Feminino , Infecções por HIV/tratamento farmacológico , Humanos , Leucócitos Mononucleares , Pessoa de Meia-Idade , Tenofovir/uso terapêuticoRESUMO
Global elimination of pediatric human immunodeficiency virus (HIV) infections will require the development of novel immune-based approaches, and understanding infant immunity to HIV is critical to guide the rational design of these intervention strategies. Despite their immunological immaturity, chronically HIV-infected children develop broadly neutralizing antibodies (bnAbs) more frequently and earlier than adults do. However, the ontogeny of humoral responses during acute HIV infection is poorly defined in infants and challenging to study in human cohorts due to the presence of maternal antibodies. To further our understanding of age-related differences in the development of HIV-specific immunity during acute infection, we evaluated the generation of virus-specific humoral immune responses in infant (n = 6) and adult (n = 12) rhesus macaques (RMs) infected with a transmitted/founder (T/F) simian-human immunodeficiency virus (SHIV) (SHIV.C.CH505 [CH505]). The plasma HIV envelope-specific IgG antibody kinetics were similar in SHIV-infected infant and adult RMs, with no significant differences in the magnitude or breadth of these responses. Interestingly, autologous tier 2 virus neutralization responses also developed with similar frequencies and kinetics in infant and adult RMs, despite infants exhibiting significantly higher follicular T helper cell (Tfh) and germinal center B cell frequencies than adults. Finally, we show that plasma viral load was the strongest predictor of the development of autologous virus neutralization in both age groups. Our results indicate that the humoral immune response to SHIV infection develops with similar kinetics among infant and adult RMs, suggesting that the early-life immune system is equipped to respond to HIV-1 and promote the production of neutralizing HIV antibodies.IMPORTANCE There is a lack of understanding of how the maturation of the infant immune system influences immunity to HIV infection or how these responses differ from those of adults. Improving our knowledge of infant HIV immunity will help guide antiviral intervention strategies that take advantage of the unique infant immune environment to successfully elicit protective immune responses. We utilized a rhesus macaque model of SHIV infection as a tool to distinguish the differences in HIV humoral immunity in infants versus adults. Here, we demonstrate that the kinetics and quality of the infant humoral immune response to HIV are highly comparable to those of adults during the early phase of infection, despite distinct differences in their Tfh responses, indicating that slightly different mechanisms may drive infant and adult humoral immunity.
Assuntos
Fatores Etários , Formação de Anticorpos , Anticorpos Anti-HIV/sangue , Infecções por HIV/imunologia , HIV/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Anticorpos Neutralizantes/sangue , Linfócitos B/imunologia , Modelos Animais de Doenças , Centro Germinativo/imunologia , Imunoglobulina G/sangue , Macaca mulatta , Plasma/virologia , Linfócitos T/imunologia , Carga ViralRESUMO
Prevention of mother-to-child transmission (MTCT) is an indispensable component in combatting the global AIDS epidemic. A combination of passive broadly neutralizing antibody (bnAb) infusion and active vaccination promises to provide protection of infants against MTCT from birth through the breastfeeding period and could prime the immune system for lifelong immunity. In this study, we investigate the impact of a single infusion of CD4 binding site (CD4bs) bnAb administered at birth on de novo antibody responses elicited by concurrent active HIV envelope vaccination. Four groups of infant macaques received active immunizations with subunit Env protein or modified vaccinia Ankara (MVA)-vectored Env and subunit Env protein, with or without a single intravenous coadministration of CH31 bnAb at birth. Vaccinated animals were monitored to evaluate binding and functional antibody responses elicited by the active vaccinations. Despite achieving plasma concentrations that were able to neutralize tier 2 viruses, coadministration of CH31 did not have a large impact on the kinetics, magnitude, specificity, or avidity of vaccine-elicited binding or functional antibody responses, including epitope specificity, the development of CD4bs antibodies, neutralization, binding to infected cells, or antibody-dependent cell-mediated cytotoxicity (ADCC). We conclude that infusion of CD4bs bnAb CH31 at birth does not interfere with de novo antibody responses to active vaccination and that a combination of passive bnAb infusion and active HIV-1 Env vaccination is a viable strategy for immediate and prolonged protection against MTCT.IMPORTANCE Our study is the first to evaluate the impact of passive infusion of a broadly neutralizing antibody in newborns on the de novo development of antibody responses following active vaccinations in infancy. We demonstrated the safety and the feasibility of bnAb administration to achieve biologically relevant levels of the antibody and showed that the passive infusion did not impair the de novo antibody production following HIV-1 Env vaccination. Our study paves the way for further investigations of the combination strategy using passive plus active immunization to provide protection of infants born to HIV-1-positive mothers over the entire period of risk for mother-to-child transmission.
Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Anti-HIV/sangue , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/prevenção & controle , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Vacinas contra a AIDS/administração & dosagem , Animais , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos/imunologia , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Macaca mulatta/imunologia , Vacinação/métodos , Vaccinia virus/genética , Vaccinia virus/imunologiaRESUMO
Toward the goal of developing an effective HIV vaccine that can be administered in infancy to protect against postnatal and lifelong sexual HIV transmission risks, the current pilot study was designed to compare the effect of novel adjuvants on the induction of HIV Env-specific antibody responses in infant macaques. Aligning our studies with the adjuvanted proteins evaluated in a prime-boost schedule with ALVAC in the ongoing HVTN (HIV Vaccine Trials Network) 702 efficacy trial, we selected the bivalent clade C Env immunogens gp120 C.1086 and gp120 TV1 in combination with the MF59 adjuvant. However, we hypothesized that the adjuvant system AS01, that is included in the pediatric RTS,S malaria vaccine, would promote Env-specific antibody responses superior to those of the oil-in-water MF59 emulsion adjuvant. In a second study arm, we compared two emulsions, glucopyranosyl lipid adjuvant formulated in a stable emulsion (GLA-SE) and 3M-052-SE, containing Toll-like receptor 4 (TLR4) and TLR7/TLR8 (TLR7/8) ligand, respectively. The latter adjuvant had been previously demonstrated to be especially effective in activating neonatal antigen-presenting cells. Our results demonstrate that different adjuvants drive quantitatively or qualitatively distinct responses to the bivalent Env vaccine. AS01 induced higher Env-specific plasma IgG antibody levels than the antigen in MF59 and promoted improved antibody function in infants, and 3M-052-SE outperformed GLA-SE by inducing the highest breadth and functionality of antibody responses. Thus, distinct adjuvants are likely to be required for maximizing vaccine-elicited immune responses in infants, particularly when immunization in infancy aims to elicit both perinatal and lifelong immunity against challenging pathogens such as HIV.IMPORTANCE Alum remains the adjuvant of choice for pediatric vaccines. Yet the distinct nature of the developing immune system in infants likely requires novel adjuvants targeted specifically at the pediatric population to reach maximal vaccine efficacy with an acceptable safety profile. The current study supports the idea that additional adjuvants for pediatric vaccines should be, and need to be, tested in infants for their potential to enhance immune responses. Using an infant macaque model, our results suggest that both AS01 and 3M-052-SE can significantly improve and better sustain HIV Env-specific antibody responses than alum. Despite the limited number of animals, the results revealed interesting differences that warrant further testing of promising novel adjuvant candidates in larger preclinical and clinical studies to define the mechanisms leading to adjuvant-improved antibody responses and to identify targets for adjuvant and vaccine optimization.
Assuntos
Vacinas contra a AIDS/imunologia , Adjuvantes Imunológicos/administração & dosagem , Formação de Anticorpos , Anticorpos Anti-HIV/sangue , Proteína gp120 do Envelope de HIV/imunologia , Vacinas contra a AIDS/administração & dosagem , Animais , Animais Recém-Nascidos , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Proteína gp120 do Envelope de HIV/administração & dosagem , Imunoglobulina G/sangue , Macaca mulattaRESUMO
BACKGROUND: Heterogeneity in the immune response to parasite infection is mediated in part by differences in host genetics, gender, and age group. In infants and young children, ongoing immunological maturation often results in increased susceptibility to infection and variable responses to drug treatment, increasing the risk of complications. Even though significant age-associated effects on host cytokine responses to Plasmodium falciparum infection have been identified, age-associated effects on uncomplicated malaria infection and anti-malarial treatment remain poorly understood. METHODS: In samples of whole blood from a cohort of naturally infected malaria-positive individuals with non-severe falciparum malaria in Malawi (n = 63 total; 34 infants and young children < 2 years old, 29 adults > 18 years old), blood cytokine levels and monocyte and dendritic cell frequencies were assessed at two timepoints: acute infection, and 4 weeks post anti-malarial treatment. The effects of age group, gender, and timepoint were modeled, and the role of these factors on infection and treatment outcomes was evaluated. RESULTS: Regardless of treatment timepoint, in this population age was significantly associated with overall blood haemoglobin, which was higher in adults, and plasma nitric oxide metabolites, IL-10, and TNF levels, which were higher in young children. There was a significant effect of age on the haemoglobin treatment response, whereby after treatment, levels increased in young children and decreased in adults. Furthermore, there were significant age-associated effects on treatment response for overall parasite load, IFN-γ, and IL-12(p40), and these effects were gender-dependent. Significant age effects on the overall levels and treatment response of myeloid dendritic cell frequencies were observed. In addition, within each age group, results showed continuous age effects on gametocyte levels (Pfs16), TNF, and nitric oxide metabolites. CONCLUSIONS: In a clinical study of young children and adults experiencing natural falciparum malaria infection and receiving anti-malarial treatment, age-associated signatures of infection and treatment responses in peripheral blood were identified. This study describes host markers that may indicate, and potentially contribute to, differential post-treatment outcomes for malaria in young children versus adults.
Assuntos
Antimaláricos/uso terapêutico , Biomarcadores/sangue , Malária Falciparum/sangue , Malária Falciparum/tratamento farmacológico , Modelos Biológicos , Adulto , Fatores Etários , Contagem de Células Sanguíneas , Citocinas/sangue , Feminino , Humanos , Lactente , Malaui , Masculino , Carga Parasitária , Fatores SexuaisRESUMO
BACKGROUND: A pediatric vaccine to prevent breast milk transmission of human immunodeficiency virus (HIV) may generate greater immune responses at viral entry sites if given by an oral route. METHODS: We compared immune responses induced in juvenile macaques by prime/boosting with simian immunodeficiency virus (SIV)-expressing DNA/modified vaccinia Ankara virus (MVA) by the intramuscular route (IM), the oral (O)/tonsillar routes (T), the O/sublingual (SL) routes, and O+IM/SL routes. RESULTS: O/T or O/SL immunization generated SIV-specific T cells in mucosal tissues but failed to induce SIV-specific IgA in saliva or stool or IgG in plasma. IM/IM or O+IM/SL generated humoral and cellular responses to SIV. IM/IM generated greater frequencies of TFH in spleen, but O+IM/SL animals had higher avidity plasma IgG and more often demonstrated mucosal IgA responses. CONCLUSION: These results suggest that codelivery of HIV DNA/MVA vaccines by the oral and IM routes might be optimal for generating both systemic and mucosal antibodies.
Assuntos
Imunidade Celular/imunologia , Imunidade nas Mucosas/imunologia , Imunogenicidade da Vacina/imunologia , Macaca mulatta , Doenças dos Macacos/imunologia , Vacinas contra a SAIDS/efeitos adversos , Vírus da Imunodeficiência Símia/imunologia , Administração Oral , Administração Sublingual , Animais , DNA Viral/efeitos adversos , Injeções Intramusculares/efeitos adversos , Estudo de Prova de Conceito , Vacínia/imunologiaRESUMO
UNLABELLED: Despite significant progress in reducing peripartum mother-to-child transmission (MTCT) of human immunodeficiency virus (HIV) with antiretroviral therapy (ART), continued access to ART throughout the breastfeeding period is still a limiting factor, and breast milk exposure to HIV accounts for up to 44% of MTCT. As abstinence from breastfeeding is not recommended, alternative means are needed to prevent MTCT of HIV. We have previously shown that oral vaccination at birth with live attenuated Mycobacterium tuberculosis strains expressing simian immunodeficiency virus (SIV) genes safely induces persistent SIV-specific cellular and humoral immune responses both systemically and at the oral and intestinal mucosa. Here, we tested the ability of oral M. tuberculosis vaccine strains expressing SIV Env and Gag proteins, followed by systemic heterologous (MVA-SIV Env/Gag/Pol) boosting, to protect neonatal macaques against oral SIV challenge. While vaccination did not protect infant macaques against oral SIV acquisition, a subset of immunized animals had significantly lower peak viremia which inversely correlated with prechallenge SIV Env-specific salivary and intestinal IgA responses and higher-avidity SIV Env-specific IgG in plasma. These controller animals also maintained CD4(+) T cell populations better and showed reduced tissue pathology compared to noncontroller animals. We show that infants vaccinated at birth can develop vaccine-induced SIV-specific IgA and IgG antibodies and cellular immune responses within weeks of life. Our data further suggest that affinity maturation of vaccine-induced plasma antibodies and induction of mucosal IgA responses at potential SIV entry sites are associated with better control of viral replication, thereby likely reducing SIV morbidity. IMPORTANCE: Despite significant progress in reducing peripartum MTCT of HIV with ART, continued access to ART throughout the breastfeeding period is still a limiting factor. Breast milk exposure to HIV accounts for up to 44% of MTCT. Alternative measures, in addition to ART, are needed to achieve the goal of an AIDS-free generation. Pediatric HIV vaccines constitute a core component of such efforts. The results of our pediatric vaccine study highlight the potential importance of vaccine-elicited mucosal Env-specific IgA responses in combination with high-avidity systemic Env-specific IgG in protection against oral SIV transmission and control of viral replication in infant macaques. The induction of potent mucosal IgA antibodies by our vaccine is remarkable considering the age-dependent development of mucosal IgA responses postbirth. A deeper understanding of postnatal immune development may inform the design of improved vaccine strategies to enhance systemic and mucosal SIV/HIV antibody responses.
Assuntos
Anticorpos Antivirais/análise , Anticorpos Antivirais/sangue , Formação de Anticorpos , Imunidade nas Mucosas , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Viremia/prevenção & controle , Administração Oral , Animais , Animais Recém-Nascidos , Portadores de Fármacos/administração & dosagem , Imunoglobulina A/análise , Imunoglobulina G/sangue , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Macaca mulatta , Mycobacterium tuberculosis/genética , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/genética , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologiaRESUMO
UNLABELLED: Influenza virus can cause life-threatening infections in neonates and young infants. Although vaccination is a major countermeasure against influenza, current vaccines are not approved for use in infants less than 6 months of age, in part due to the weak immune response following vaccination. Thus, there is a strong need to develop new vaccines with improved efficacy for this vulnerable population. To address this issue, we established a neonatal African green monkey (AGM) nonhuman primate model that could be used to identify effective influenza vaccine approaches for use in young infants. We assessed the ability of flagellin, a Toll-like receptor 5 (TLR5) agonist, to serve as an effective adjuvant in this at-risk population. Four- to 6-day-old AGMs were primed and boosted with inactivated PR8 influenza virus (IPR8) adjuvanted with either wild-type flagellin or inactive flagellin with a mutation at position 229 (m229), the latter of which is incapable of signaling through TLR5. Increased IgG responses were observed following a boost, as well as at early times after challenge, in infants vaccinated with flagellin-adjuvanted IPR8. Inclusion of flagellin during vaccination also resulted in a significantly increased number of influenza virus-specific T cells following challenge compared to the number in infants vaccinated with the m229 adjuvant. Finally, following challenge infants vaccinated with IPR8 plus flagellin exhibited a reduced pathology in the lungs compared to that in infants that received IPR8 plus m229. This study provides the first evidence of flagellin-mediated enhancement of vaccine responses in nonhuman primate neonates. IMPORTANCE: Young infants are particularly susceptible to severe disease as a result of influenza virus infection. Compounding this is the lack of effective vaccines for use in this vulnerable population. Here we describe a vaccine approach that results in improved immune responses and protection in young infants. Incorporation of flagellin during vaccination resulted in increased antibody and T cell responses together with reduced disease following virus infection. These results suggest that flagellin may serve as an effective adjuvant for vaccines targeted to this vulnerable population.
Assuntos
Adjuvantes Imunológicos/administração & dosagem , Flagelina/administração & dosagem , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Vacinação/métodos , Animais , Animais Recém-Nascidos , Anticorpos Antivirais/sangue , Chlorocebus aethiops , Modelos Animais de Doenças , Imunoglobulina G/sangue , Vacinas contra Influenza/administração & dosagem , Linfócitos T/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologiaRESUMO
BACKGROUND: The worldwide increase in life expectancy has been associated with an increase in age-related morbidities. The underlying mechanisms resulting in immunosenescence are only incompletely understood. Chronic viral infections, in particular infection with human cytomegalovirus (HCMV), have been suggested as a main driver in immunosenescence. Here, we propose that rhesus macaques could serve as a relevant model to define the impact of chronic viral infections on host immunity in the aging host. We evaluated whether chronic rhesus CMV (RhCMV) infection, similar to HCMV infection in humans, would modulate normal immunological changes in the aging individual by taking advantage of the unique resource of rhesus macaques that were bred and raised to be Specific Pathogen Free (SPF-2) for distinct viruses. RESULTS: Our results demonstrate that normal age-related immunological changes in frequencies, activation, maturation, and function of peripheral blood cell lymphocytes in humans occur in a similar manner over the lifespan of rhesus macaques. The comparative analysis of age-matched SPF-2 and non-SPF macaques that were housed under identical conditions revealed distinct differences in certain immune parameters suggesting that chronic pathogen exposure modulated host immune responses. All non-SPF macaques were infected with RhCMV, suggesting that chronic RhCMV infection was a major contributor to altered immune function in non-SPF macaques, although a causative relationship was not established and outside the scope of these studies. Further, we showed that immunological differences between SPF-2 and non-SPF macaques were already apparent in adolescent macaques, potentially predisposing RhCMV-infected animals to age-related pathologies. CONCLUSIONS: Our data validate rhesus macaques as a relevant animal model to study how chronic viral infections modulate host immunity and impact immunosenescence. Comparative studies in SPF-2 and non-SPF macaques could identify important mechanisms associated with inflammaging and thereby lead to new therapies promoting healthy aging in humans.
RESUMO
Elucidating optimal vaccine adjuvants for harnessing age-specific immune pathways to enhance magnitude, breadth, and durability of immunogenicity remains a key gap area in pediatric vaccine design. A better understanding of age-specific adjuvants will inform precision discovery and development of safe and effective vaccines for protecting children from preventable infectious diseases.
Assuntos
Medicina de Precisão , Vacinas , Humanos , Criança , Vacinas/imunologia , Adjuvantes Imunológicos , Adjuvantes de Vacinas , PediatriaRESUMO
Introduction: HIV-exposed uninfected (HEU) infants exhibit elevated pro-inflammatory biomarkers that persist after birth. However, comprehensive assessments of bioprofiles associated with immune regulation and development in pregnant women with HIV (PWH) and HEU infants has not been performed. Maternal immunity in PWH may be imprinted on their HEU newborns, altering immune bioprofiles during early immune development. Methods: Cryopreserved paired plasma samples from 46 HEU infants and their mothers enrolled in PACTG 316, a clinical trial to prevent perinatal HIV-1 transmission were analyzed. PWH received antiretrovirals (ARV) and had either fully suppressed or unsuppressed viral replication. Maternal blood samples obtained during labor and infant samples at birth and 6 months were measured for 21 biomarkers associated with germinal centers (GC), macrophage activation, T-cell activation, interferon gamma (IFN-γ)-inducible chemokines, and immune regulatory cytokines using Mesoscale assays. Pregnant women without HIV (PWOH) and their HIV unexposed uninfected (HUU) newborns and non-pregnant women without HIV (NPWOH) served as reference groups. Linear regression analysis fitted for comparison among groups and adjusted for covariant(s) along with principal component analysis performed to assess differences among groups. Results: Compared with NPWOH, PWOH displayed higher levels of GC, macrophage, and regulatory biomarkers. PWH compared to PWOH displayed elevated GC, T cell activation, and IFN-γ-inducible chemokines biomarkers at delivery. Similar to their mothers, HEU infants had elevated GC, macrophage, and IFN-γ-inducible chemokines, as well as elevated anti-inflammatory cytokines, IL-10 and IL-1RA. Across all mother/newborn dyads, multiple biomarkers positively correlated, providing further evidence that maternal inflammation imprints on newborn bioprofiles. By 6 months, many HEU biomarkers normalized to levels similar to HUU infants, but some GC and inflammatory biomarkers remained perturbed. Bioprofiles in PWH and HEU infants were similar regardless of the extent of maternal viral suppression by ARV. Conclusions: GC immune pathways are perturbed in HEU newborns, but immune regulatory responses down regulate inflammation during early infancy, indicating a transient inflammatory effect. However, several GC biomarkers that may alter immune development remain perturbed.