Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 45(5): e26668, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520378

RESUMO

Parkinson's disease (PD) often shows disrupted brain connectivity and autonomic dysfunctions, progressing alongside with motor and cognitive decline. Recently, PD has been linked to a reduced sensitivity to cardiac inputs, that is, cardiac interoception. Altogether, those signs suggest that PD causes an altered brain-heart connection whose mechanisms remain unclear. Our study aimed to explore the large-scale network disruptions and the neurophysiology of disrupted interoceptive mechanisms in PD. We focused on examining the alterations in brain-heart coupling in PD and their potential connection to motor symptoms. We developed a proof-of-concept method to quantify relationships between the co-fluctuations of brain connectivity and cardiac sympathetic and parasympathetic activities. We quantified the brain-heart couplings from electroencephalogram and electrocardiogram recordings from PD patients on and off dopaminergic medication, as well as in healthy individuals at rest. Our results show that the couplings of fluctuating alpha and gamma connectivity with cardiac sympathetic dynamics are reduced in PD patients, as compared to healthy individuals. Furthermore, we show that PD patients under dopamine medication recover part of the brain-heart coupling, in proportion with the reduced motor symptoms. Our proposal offers a promising approach to unveil the physiopathology of PD and promoting the development of new evaluation methods for the early stages of the disease.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Mapeamento Encefálico , Frequência Cardíaca , Imageamento por Ressonância Magnética , Encéfalo , Dopaminérgicos
2.
Phys Rev Lett ; 132(9): 098402, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489647

RESUMO

The stochastic exploration of the configuration space and the exploitation of functional states underlie many biological processes. The evolutionary dynamics stands out as a remarkable example. Here, we introduce a novel formalism that mimics evolution and encodes a general exploration-exploitation dynamics for biological networks. We apply it to the brain wiring problem, focusing on the maturation of that of the nematode Caenorhabditis elegans. We demonstrate that a parsimonious maxent description of the adult brain combined with our framework is able to track down the entire developmental trajectory.


Assuntos
Encéfalo , Caenorhabditis elegans , Animais , Evolução Biológica
3.
Rep Prog Phys ; 86(10)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37437559

RESUMO

The brain is a highly complex system. Most of such complexity stems from the intermingled connections between its parts, which give rise to rich dynamics and to the emergence of high-level cognitive functions. Disentangling the underlying network structure is crucial to understand the brain functioning under both healthy and pathological conditions. Yet, analyzing brain networks is challenging, in part because their structure represents only one possible realization of a generative stochastic process which is in general unknown. Having a formal way to cope with such intrinsic variability is therefore central for the characterization of brain network properties. Addressing this issue entails the development of appropriate tools mostly adapted from network science and statistics. Here, we focus on a particular class of maximum entropy models for networks, i.e. exponential random graph models, as a parsimonious approach to identify the local connection mechanisms behind observed global network structure. Efforts are reviewed on the quest for basic organizational properties of human brain networks, as well as on the identification of predictive biomarkers of neurological diseases such as stroke. We conclude with a discussion on how emerging results and tools from statistical graph modeling, associated with forthcoming improvements in experimental data acquisition, could lead to a finer probabilistic description of complex systems in network neuroscience.


Assuntos
Encéfalo , Acidente Vascular Cerebral , Humanos , Entropia , Modelos Estatísticos
4.
Neuroimage ; 209: 116500, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31927130

RESUMO

Brain-computer interfaces (BCIs) have been largely developed to allow communication, control, and neurofeedback in human beings. Despite their great potential, BCIs perform inconsistently across individuals and the neural processes that enable humans to achieve good control remain poorly understood. To address this question, we performed simultaneous high-density electroencephalographic (EEG) and magnetoencephalographic (MEG) recordings in a motor imagery-based BCI training involving a group of healthy subjects. After reconstructing the signals at the cortical level, we showed that the reinforcement of motor-related activity during the BCI skill acquisition is paralleled by a progressive disconnection of associative areas which were not directly targeted during the experiments. Notably, these network connectivity changes reflected growing automaticity associated with BCI performance and predicted future learning rate. Altogether, our findings provide new insights into the large-scale cortical organizational mechanisms underlying BCI learning, which have implications for the improvement of this technology in a broad range of real-life applications.


Assuntos
Interfaces Cérebro-Computador , Córtex Cerebral/fisiologia , Conectoma , Imaginação/fisiologia , Aprendizagem/fisiologia , Atividade Motora/fisiologia , Rede Nervosa/fisiologia , Reforço Psicológico , Adulto , Eletroencefalografia , Feminino , Humanos , Estudos Longitudinais , Magnetoencefalografia , Masculino , Adulto Jovem
6.
Brain ; 142(7): 2096-2112, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31211359

RESUMO

Early biomarkers are needed to identify individuals at high risk of preclinical Alzheimer's disease and to better understand the pathophysiological processes of disease progression. Preclinical Alzheimer's disease EEG changes would be non-invasive and cheap screening tools and could also help to predict future progression to clinical Alzheimer's disease. However, the impact of amyloid-ß deposition and neurodegeneration on EEG biomarkers needs to be elucidated. We included participants from the INSIGHT-preAD cohort, which is an ongoing single-centre multimodal observational study that was designed to identify risk factors and markers of progression to clinical Alzheimer's disease in 318 cognitively normal individuals aged 70-85 years with a subjective memory complaint. We divided the subjects into four groups, according to their amyloid status (based on 18F-florbetapir PET) and neurodegeneration status (evidenced by 18F-fluorodeoxyglucose PET brain metabolism in Alzheimer's disease signature regions). The first group was amyloid-positive and neurodegeneration-positive, which corresponds to stage 2 of preclinical Alzheimer's disease. The second group was amyloid-positive and neurodegeneration-negative, which corresponds to stage 1 of preclinical Alzheimer's disease. The third group was amyloid-negative and neurodegeneration-positive, which corresponds to 'suspected non-Alzheimer's pathophysiology'. The last group was the control group, defined by amyloid-negative and neurodegeneration-negative subjects. We analysed 314 baseline 256-channel high-density eyes closed 1-min resting state EEG recordings. EEG biomarkers included spectral measures, algorithmic complexity and functional connectivity assessed with a novel information-theoretic measure, weighted symbolic mutual information. The most prominent effects of neurodegeneration on EEG metrics were localized in frontocentral regions with an increase in high frequency oscillations (higher beta and gamma power) and a decrease in low frequency oscillations (lower delta power), higher spectral entropy, higher complexity and increased functional connectivity measured by weighted symbolic mutual information in theta band. Neurodegeneration was associated with a widespread increase of median spectral frequency. We found a non-linear relationship between amyloid burden and EEG metrics in neurodegeneration-positive subjects, either following a U-shape curve for delta power or an inverted U-shape curve for the other metrics, meaning that EEG patterns are modulated differently depending on the degree of amyloid burden. This finding suggests initial compensatory mechanisms that are overwhelmed for the highest amyloid load. Together, these results indicate that EEG metrics are useful biomarkers for the preclinical stage of Alzheimer's disease.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/fisiopatologia , Eletroencefalografia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/classificação , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Compostos de Anilina/metabolismo , Biomarcadores/metabolismo , Ondas Encefálicas/fisiologia , Estudos de Casos e Controles , Progressão da Doença , Etilenoglicóis/metabolismo , Feminino , Fluordesoxiglucose F18/metabolismo , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Degeneração Neural/patologia , Tomografia por Emissão de Pósitrons , Sintomas Prodrômicos
7.
Sensors (Basel) ; 19(3)2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30709004

RESUMO

The recent embedding of electroencephalographic (EEG) electrodes in wearable devices raises the problem of the quality of the data recorded in such uncontrolled environments. These recordings are often obtained with dry single-channel EEG devices, and may be contaminated by many sources of noise which can compromise the detection and characterization of the brain state studied. In this paper, we propose a classification-based approach to effectively quantify artefact contamination in EEG segments, and discriminate muscular artefacts. The performance of our method were assessed on different databases containing either artificially contaminated or real artefacts recorded with different type of sensors, including wet and dry EEG electrodes. Furthermore, the quality of unlabelled databases was evaluated. For all the studied databases, the proposed method is able to rapidly assess the quality of the EEG signals with an accuracy higher than 90%. The obtained performance suggests that our approach provide an efficient, fast and automated quality assessment of EEG signals from low-cost wearable devices typically composed of a dry single EEG channel.


Assuntos
Eletroencefalografia/métodos , Algoritmos , Artefatos , Encéfalo/fisiologia , Interfaces Cérebro-Computador , Eletrodos , Humanos , Dispositivos Eletrônicos Vestíveis
8.
PLoS Comput Biol ; 13(1): e1005305, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28076353

RESUMO

In many biological systems, the network of interactions between the elements can only be inferred from experimental measurements. In neuroscience, non-invasive imaging tools are extensively used to derive either structural or functional brain networks in-vivo. As a result of the inference process, we obtain a matrix of values corresponding to a fully connected and weighted network. To turn this into a useful sparse network, thresholding is typically adopted to cancel a percentage of the weakest connections. The structural properties of the resulting network depend on how much of the inferred connectivity is eventually retained. However, how to objectively fix this threshold is still an open issue. We introduce a criterion, the efficiency cost optimization (ECO), to select a threshold based on the optimization of the trade-off between the efficiency of a network and its wiring cost. We prove analytically and we confirm through numerical simulations that the connection density maximizing this trade-off emphasizes the intrinsic properties of a given network, while preserving its sparsity. Moreover, this density threshold can be determined a-priori, since the number of connections to filter only depends on the network size according to a power-law. We validate this result on several brain networks, from micro- to macro-scales, obtained with different imaging modalities. Finally, we test the potential of ECO in discriminating brain states with respect to alternative filtering methods. ECO advances our ability to analyze and compare biological networks, inferred from experimental data, in a fast and principled way.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Modelos Estatísticos , Rede Nervosa/fisiologia , Encéfalo/diagnóstico por imagem , Biologia Computacional , Simulação por Computador , Humanos , Rede Nervosa/diagnóstico por imagem
9.
Sensors (Basel) ; 18(8)2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30127298

RESUMO

In this paper, we address the problem of green Compressed Sensing (CS) reconstruction within Internet of Things (IoT) networks, both in terms of computing architecture and reconstruction algorithms. The approach is novel since, unlike most of the literature dealing with energy efficient gathering of the CS measurements, we focus on the energy efficiency of the signal reconstruction stage given the CS measurements. As a first novel contribution, we present an analysis of the energy consumption within the IoT network under two computing architectures. In the first one, reconstruction takes place within the IoT network and the reconstructed data are encoded and transmitted out of the IoT network; in the second one, all the CS measurements are forwarded to off-network devices for reconstruction and storage, i.e., reconstruction is off-loaded. Our analysis shows that the two architectures significantly differ in terms of consumed energy, and it outlines a theoretically motivated criterion to select a green CS reconstruction computing architecture. Specifically, we present a suitable decision function to determine which architecture outperforms the other in terms of energy efficiency. The presented decision function depends on a few IoT network features, such as the network size, the sink connectivity, and other systems' parameters. As a second novel contribution, we show how to overcome classical performance comparison of different CS reconstruction algorithms usually carried out w.r.t. the achieved accuracy. Specifically, we consider the consumed energy and analyze the energy vs. accuracy trade-off. The herein presented approach, jointly considering signal processing and IoT network issues, is a relevant contribution for designing green compressive sampling architectures in IoT networks.

10.
Cerebellum ; 16(2): 358-375, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27372098

RESUMO

Although cerebellar-cortical interactions have been studied extensively in animal models and humans using modern neuroimaging techniques, the effects of cerebellar stroke and focal lesions on cerebral cortical processing remain unknown. In the present study, we analyzed the large-scale functional connectivity at the cortical level by combining high-density electroencephalography (EEG) and source imaging techniques to evaluate and quantify the compensatory reorganization of brain networks after cerebellar damage. The experimental protocol comprised a repetitive finger extension task by 10 patients with unilateral focal cerebellar lesions and 10 matched healthy controls. A graph theoretical approach was used to investigate the functional reorganization of cortical networks. Our patients, compared with controls, exhibited significant differences at global and local topological level of their brain networks. An abnormal rise in small-world network efficiency was observed in the gamma band (30-40 Hz) during execution of the task, paralleled by increased long-range connectivity between cortical hemispheres. Our findings show that a pervasive reorganization of the brain network is associated with cerebellar focal damage and support the idea that the cerebellum boosts or refines cortical functions. Clinically, these results suggest that cortical changes after cerebellar damage are achieved through an increase in the interactions between remote cortical areas and that rehabilitation should aim to reshape functional activation patterns. Future studies should determine whether these hypotheses are limited to motor tasks or if they also apply to cerebro-cerebellar dysfunction in general.


Assuntos
Cerebelo/fisiopatologia , Lateralidade Funcional/fisiologia , Atividade Motora/fisiologia , Plasticidade Neuronal/fisiologia , Adolescente , Adulto , Idoso , Cerebelo/cirurgia , Eletroencefalografia , Eletromiografia , Feminino , Dedos/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiopatologia , Vias Neurais/fisiopatologia , Vias Neurais/cirurgia , Procedimentos Neurocirúrgicos/efeitos adversos , Processamento de Sinais Assistido por Computador , Acidente Vascular Cerebral/fisiopatologia
11.
Netw Neurosci ; 8(2): 557-575, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952808

RESUMO

In recent years, there has been an increasing interest in studying brain-heart interactions. Methodological advancements have been proposed to investigate how the brain and the heart communicate, leading to new insights into some neural functions. However, most frameworks look at the interaction of only one brain region with heartbeat dynamics, overlooking that the brain has functional networks that change dynamically in response to internal and external demands. We propose a new framework for assessing the functional interplay between cortical networks and cardiac dynamics from noninvasive electrophysiological recordings. We focused on fluctuating network metrics obtained from connectivity matrices of EEG data. Specifically, we quantified the coupling between cardiac sympathetic-vagal activity and brain network metrics of clustering, efficiency, assortativity, and modularity. We validate our proposal using open-source datasets: one that involves emotion elicitation in healthy individuals, and another with resting-state data from patients with Parkinson's disease. Our results suggest that the connection between cortical network segregation and cardiac dynamics may offer valuable insights into the affective state of healthy participants, and alterations in the network physiology of Parkinson's disease. By considering multiple network properties, this framework may offer a more comprehensive understanding of brain-heart interactions. Our findings hold promise in the development of biomarkers for diagnostic and cognitive/motor function evaluation.

12.
Nat Commun ; 15(1): 6038, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39019863

RESUMO

Real-world networks typically exhibit several aspects, or layers, of interactions among their nodes. By permuting the role of the nodes and the layers, we establish a new criterion to construct the dual of a network. This approach allows to examine connectivity from either a node-centric or layer-centric viewpoint. Through rigorous analytical methods and extensive simulations, we demonstrate that nodewise and layerwise connectivity measure different but related aspects of the same system. Leveraging node-layer duality provides complementary insights, enabling a deeper comprehension of diverse networks across social science, technology and biology. Taken together, these findings reveal previously unappreciated features of complex systems and provide a fresh tool for delving into their structure and dynamics.

13.
J Neural Eng ; 21(4)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38996409

RESUMO

Objective. Noninvasive brain-computer interfaces (BCIs) allow to interact with the external environment by naturally bypassing the musculoskeletal system. Making BCIs efficient and accurate is paramount to improve the reliability of real-life and clinical applications, from open-loop device control to closed-loop neurorehabilitation.Approach. By promoting sense of agency and embodiment, realistic setups including multimodal channels of communication, such as eye-gaze, and robotic prostheses aim to improve BCI performance. However, how the mental imagery command should be integrated in those hybrid systems so as to ensure the best interaction is still poorly understood. To address this question, we performed a hybrid EEG-based BCI training involving healthy volunteers enrolled in a reach-and-grasp action operated by a robotic arm.Main results. Showed that the hand grasping motor imagery timing significantly affects the BCI accuracy evolution as well as the spatiotemporal brain dynamics. Larger accuracy improvement was obtained when motor imagery is performed just after the robot reaching, as compared to before or during the movement. The proximity with the subsequent robot grasping favored intentional binding, led to stronger motor-related brain activity, and primed the ability of sensorimotor areas to integrate information from regions implicated in higher-order cognitive functions.Significance. Taken together, these findings provided fresh evidence about the effects of intentional binding on human behavior and cortical network dynamics that can be exploited to design a new generation of efficient brain-machine interfaces.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Imaginação , Humanos , Eletroencefalografia/métodos , Masculino , Adulto , Imaginação/fisiologia , Feminino , Robótica/métodos , Força da Mão/fisiologia , Adulto Jovem , Intenção , Desempenho Psicomotor/fisiologia
14.
iScience ; 27(1): 108734, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38226174

RESUMO

Large-scale interactions among multiple brain regions manifest as bursts of activations called neuronal avalanches, which reconfigure according to the task at hand and, hence, might constitute natural candidates to design brain-computer interfaces (BCIs). To test this hypothesis, we used source-reconstructed magneto/electroencephalography during resting state and a motor imagery task performed within a BCI protocol. To track the probability that an avalanche would spread across any two regions, we built an avalanche transition matrix (ATM) and demonstrated that the edges whose transition probabilities significantly differed between conditions hinged selectively on premotor regions in all subjects. Furthermore, we showed that the topology of the ATMs allows task-decoding above the current gold standard. Hence, our results suggest that neuronal avalanches might capture interpretable differences between tasks that can be used to inform brain-computer interfaces.

15.
Neuroimage ; 83: 438-49, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23791916

RESUMO

In recent years, network analyses have been used to evaluate brain reorganization following stroke. However, many studies have often focused on single topological scales, leading to an incomplete model of how focal brain lesions affect multiple network properties simultaneously and how changes on smaller scales influence those on larger scales. In an EEG-based experiment on the performance of hand motor imagery (MI) in 20 patients with unilateral stroke, we observed that the anatomic lesion affects the functional brain network on multiple levels. In the beta (13-30 Hz) frequency band, the MI of the affected hand (Ahand) elicited a significantly lower smallworldness and local efficiency (Eloc) versus the unaffected hand (Uhand). Notably, the abnormal reduction in Eloc significantly depended on the increase in interhemispheric connectivity, which was in turn determined primarily by the rise of regional connectivity in the parieto-occipital sites of the affected hemisphere. Further, in contrast to the Uhand MI, in which significantly high connectivity was observed for the contralateral sensorimotor regions of the unaffected hemisphere, the regions with increased connectivity during the Ahand MI lay in the frontal and parietal regions of the contralaterally affected hemisphere. Finally, the overall sensorimotor function of our patients, as measured by Fugl-Meyer Assessment (FMA) index, was significantly predicted by the connectivity of their affected hemisphere. These results improve on our understanding of stroke-induced alterations in functional brain networks.


Assuntos
Imaginação , Córtex Motor/fisiopatologia , Transtornos dos Movimentos/fisiopatologia , Movimento , Rede Nervosa/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Adulto , Idoso , Mapeamento Encefálico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos dos Movimentos/etiologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Acidente Vascular Cerebral/complicações
16.
Brain Topogr ; 26(2): 303-14, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23053602

RESUMO

Proportional reasoning is very important logical skill required in mathematics and science problem solving as well as in everyday life decisions. However, there is a lack of studies on neurophysiological correlates of proportional reasoning. To explore the brain activity of healthy adults while performing a balance scale task, we used high-resolution EEG techniques and graph-theory based connectivity analysis. After unskilled subjects learned how to properly solve the task, their cortical power spectral density (PSD) maps revealed an increased parietal activity in the beta band. This indicated that subjects started to perform calculations. In addition, the number of inter-hemispheric connections decreased after learning, implying a rearrangement of the brain activity. Repeated performance of the task led to the PSD decrease in the beta and gamma bands among parietal and frontal regions along with a synchronization of lower frequencies. These findings suggest that repetition led to a more automatic task performance. Subjects were also divided in two groups according to their scores on the test of logical thinking (TOLT). Although no group differences in the accuracy and reaction times were found, EEG data showed higher activity in the beta and gamma bands for the group that scored better on TOLT. Learning and repetition induced changes in the pattern of functional connectivity were evident for all frequency bands. Overall, the results indicated that higher frequency oscillations in frontal and parietal regions are particularly important for proportional reasoning.


Assuntos
Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Rede Nervosa/fisiologia , Análise e Desempenho de Tarefas , Pensamento/fisiologia , Adulto , Ondas Encefálicas/fisiologia , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Feminino , Humanos , Lógica , Masculino , Matemática
17.
PLoS One ; 18(3): e0282181, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952514

RESUMO

In many fields of science and technology we are confronted with complex networks. Making sense of these networks often require the ability to visualize and explore their intermingled structure consisting of nodes and links. To facilitate the identification of significant connectivity patterns, many methods have been developed based on the rearrangement of the nodes so as to avoid link criss-cross. However, real networks are often embedded in a geometrical space and the nodes code for an intrinsic physical feature of the system that one might want to preserve. For these spatial networks, it is therefore crucial to find alternative strategies operating on the links and not on the nodes. Here, we introduce Vizaj a javascript web application to render spatial networks based on optimized geometrical criteria that reshape the link profiles. While optimized for 3D networks, Vizaj can also be used for 2D networks and offers the possibility to interactively customize the visualization via several controlling parameters, including network filtering and the effect of internode distance on the link trajectories. Vizaj is further equipped with additional options allowing to improve the final aesthetics, such as the color/size of both nodes and links, zooming/rotating/translating, and superimposing external objects. Vizaj is an open-source software which can be freely downloaded and updated via a github repository. Here, we provide a detailed description of its main features and algorithms together with a guide on how to use it. Finally, we validate its potential on several synthetic and real spatial networks from infrastructural to biological systems. We hope that Vizaj will help scientists and practitioners to make sense of complex networks and provide aesthetic while informative visualizations.


Assuntos
Algoritmos , Software
18.
Brain Struct Funct ; 227(9): 3001-3015, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36274102

RESUMO

Understanding how few distributed areas can steer large-scale brain activity is a fundamental question that has practical implications, which range from inducing specific patterns of behavior to counteracting disease. Recent endeavors based on network controllability provided fresh insights into the potential ability of single regions to influence whole brain dynamics through the underlying structural connectome. However, controlling the entire brain activity is often unfeasible and might not always be necessary. The question whether single areas can control specific target subsystems remains crucial, albeit still poorly explored. Furthermore, the structure of the brain network exhibits progressive changes across the lifespan, but little is known about the possible consequences in the controllability properties. To address these questions, we adopted a novel target controllability approach that quantifies the centrality of brain nodes in controlling specific target anatomo-functional systems. We then studied such target control centrality in human connectomes obtained from healthy individuals aged from 5 to 85. Main results showed that the sensorimotor system has a high influencing capacity, but it is difficult for other areas to influence it. Furthermore, we reported that target control centrality varies with age and that temporal-parietal regions, whose cortical thinning is crucial in dementia-related diseases, exhibit lower values in older people. By simulating targeted attacks, such as those occurring in focal stroke, we showed that the ipsilesional hemisphere is the most affected one regardless of the damaged area. Notably, such degradation in target control centrality was more evident in younger people, thus supporting early-vulnerability hypotheses after stroke.


Assuntos
Conectoma , Acidente Vascular Cerebral , Humanos , Idoso , Encéfalo , Envelhecimento , Lobo Parietal , Imageamento por Ressonância Magnética/métodos
19.
J R Soc Interface ; 19(188): 20210850, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35232279

RESUMO

Plasticity after stroke is a complex phenomenon. Functional reorganization occurs not only in the perilesional tissue but throughout the brain. However, the local connection mechanisms generating such global network changes remain largely unknown. To address this question, time must be considered as a formal variable of the problem rather than a simple repeated observation. Here, we hypothesized that the presence of temporal connection motifs, such as the formation of temporal triangles (T) and edges (E) over time, would explain large-scale brain reorganization after stroke. To test our hypothesis, we adopted a statistical framework based on temporal exponential random graph models (tERGMs), where the aforementioned temporal motifs were implemented as parameters and adapted to capture global network changes after stroke. We first validated the performance on synthetic time-varying networks as compared to standard static approaches. Then, using real functional brain networks, we showed that estimates of tERGM parameters were sufficient to reproduce brain network changes from 2 weeks to 1 year after stroke. These temporal connection signatures, reflecting within-hemisphere segregation (T) and between hemisphere integration (E), were associated with patients' future behaviour. In particular, interhemispheric temporal edges significantly correlated with the chronic language and visual outcome in subcortical and cortical stroke, respectively. Our results indicate the importance of time-varying connection properties when modelling dynamic complex systems and provide fresh insights into modelling of brain network mechanisms after stroke.


Assuntos
Idioma , Acidente Vascular Cerebral , Encéfalo , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa
20.
Sci Rep ; 12(1): 4725, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304536

RESUMO

The main aim of the study was to examine how brain network metrics change after retrieval of attachment memories in individuals with unresolved/disorganized (U/D) attachment-related state of mind and those with organized/resolved (O/R) state of mind. We focused on three main network metrics associated with integration and segregation: global (Eglob) efficiency for the first function, local (Eloc) efficiency and modularity for the second. We also examined assortativity and centrality metrics. Electroencephalography (EEG) recordings were performed before and after the Adult Attachment Interview (AAI) in a sample of 50 individuals previously assessed for parenting quality. Functional connectivity matrices were constructed by means of the exact Low-Resolution Electromagnetic Tomography (eLORETA) software and then imported into MATLAB to compute brain network metrics. Compared to individuals with O/R attachment-related state of mind, those with U/D show a significant decrease in beta Eglob after AAI. No statistically significant difference among groups emerged in Eloc and modularity metrics after AAI, neither in assortativity nor in betweenness centrality. These results may help to better understand the neurophysiological patterns underlying the disintegrative effects of retrieving traumatic attachment memories in individuals with disorganized state of mind in relation to attachment.


Assuntos
Encéfalo , Apego ao Objeto , Adulto , Encéfalo/fisiologia , Eletroencefalografia , Humanos , Memória , Poder Familiar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA