Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(5): e1010439, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35617196

RESUMO

Sexual reproduction, mutation, and reassortment of nuclei increase genotypic diversity in rust fungi. Sexual reproduction is inherent to rust fungi, coupled with their coevolved plant hosts in native pathosystems. Rust fungi are hypothesised to exchange nuclei by somatic hybridisation with an outcome of increased genotypic diversity, independent of sexual reproduction. We provide criteria to demonstrate whether somatic exchange has occurred, including knowledge of parental haplotypes and rejection of fertilisation in normal rust life cycles.


Assuntos
Basidiomycota , Doenças das Plantas , Animais , Basidiomycota/genética , Fungos , Estágios do Ciclo de Vida , Doenças das Plantas/microbiologia , Reprodução
2.
Microbiol Resour Announc ; 12(2): e0059422, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36688647

RESUMO

Here, we describe the metagenome-assembled genome (MAG) HetDA_MAG_SS2, in the family Cyclobacteriaceae. It was found in association with a HetDA cyanobiont isolated from a Station ALOHA Trichodesmium colony. Annotation suggests that HetDA_MAG_SS2 is a chemoorganoheterotroph with the potential for lithoheterotrophy, containing genes for aerobic respiration, mixed acid fermentation, dissimilatory nitrate reduction to ammonium, and sulfide oxidation.

3.
ISME J ; 16(12): 2702-2711, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36008474

RESUMO

In the nitrogen-limited subtropical gyres, diazotrophic cyanobacteria, including Crocosphaera, provide an essential ecosystem service by converting dinitrogen (N2) gas into ammonia to support primary production in these oligotrophic regimes. Natural gradients of phosphorus (P) and iron (Fe) availability in the low-latitude oceans constrain the biogeography and activity of diazotrophs with important implications for marine biogeochemical cycling. Much remains unknown regarding Crocosphaera's physiological and molecular responses to multiple nutrient limitations. We cultured C. watsonii under Fe, P, and Fe/P (co)-limiting scenarios to link cellular physiology with diel gene expression and observed unique physiological and transcriptional profiles for each treatment. Counterintuitively, reduced growth and N2 fixation resource use efficiencies (RUEs) for Fe or P under P limitation were alleviated under Fe/P co-limitation. Differential gene expression analyses show that Fe/P co-limited cells employ the same responses as single-nutrient limited cells that reduce cellular nutrient requirements and increase responsiveness to environmental change including smaller cell size, protein turnover (Fe-limited), and upregulation of environmental sense-and-respond systems (P-limited). Combined, these mechanisms enhance growth and RUEs in Fe/P co-limited cells. These findings are important to our understanding of nutrient controls on N2 fixation and the implications for primary productivity and microbial dynamics in a changing ocean.


Assuntos
Cianobactérias , Fósforo , Fósforo/metabolismo , Nitrogênio/metabolismo , Fixação de Nitrogênio/fisiologia , Ferro/metabolismo , Ecossistema , Água do Mar/microbiologia , Cianobactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA