Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cells ; 13(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38786059

RESUMO

In recent decades, there has been a dramatic rise in the rates of children being born after in utero exposure to drugs of abuse, particularly opioids. Opioids have been shown to have detrimental effects on neurons and glia in the central nervous system (CNS), but the impact of prenatal opioid exposure (POE) on still-developing synaptic circuitry is largely unknown. Astrocytes exert a powerful influence on synaptic development, secreting factors to either promote or inhibit synapse formation and neuronal maturation in the developing CNS. Here, we investigated the effects of the partial µ-opioid receptor agonist buprenorphine on astrocyte synaptogenic signaling and morphological development in cortical cell culture. Acute buprenorphine treatment had no effect on the excitatory synapse number in astrocyte-free neuron cultures. In conditions where neurons shared culture media with astrocytes, buprenorphine attenuated the synaptogenic capabilities of astrocyte-secreted factors. Neurons cultured from drug-naïve mice showed no change in synapses when treated with factors secreted by astrocytes from POE mice. However, this same treatment was synaptogenic when applied to neurons from POE mice, indicating a complex neuroadaptive response in the event of impaired astrocyte signaling. In addition to promoting morphological and connectivity changes in neurons, POE exerted a strong influence on astrocyte development, disrupting their structural maturation and promoting the accumulation of lipid droplets (LDs), suggestive of a maladaptive stress response in the developing CNS.


Assuntos
Analgésicos Opioides , Astrócitos , Neurônios , Efeitos Tardios da Exposição Pré-Natal , Transdução de Sinais , Sinapses , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Animais , Sinapses/metabolismo , Sinapses/efeitos dos fármacos , Feminino , Gravidez , Camundongos , Analgésicos Opioides/farmacologia , Analgésicos Opioides/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/patologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Transdução de Sinais/efeitos dos fármacos , Buprenorfina/farmacologia , Células Cultivadas , Camundongos Endogâmicos C57BL
2.
eNeuro ; 8(4)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34266964

RESUMO

The regulation of synaptic connectivity in the brain is vital to proper functioning and development of the CNS. Formation of neural networks in the CNS has been shown to be heavily influenced by astrocytes, which secrete factors, including thrombospondin (TSP) family proteins, that promote synaptogenesis. However, whether this process is different between males and females has not been thoroughly investigated. In this study, we found that cortical neurons purified from newborn male rats showed a significantly more robust synaptogenic response compared with female-derived cells when exposed to factors secreted from astrocytes. This difference was driven largely by the neuronal response to TSP2, which increased synapses in male neurons while showing no effect on female neurons. Blockade of endogenous 17ß-estradiol (E2) production with letrozole normalized the TSP response between male and female cells, indicating a level of regulation by estrogen signaling. Our results suggest that male and female neurons show a divergent response to TSP synaptogenic signaling, contributing to sex differences in astrocyte-mediated synaptic connectivity.


Assuntos
Astrócitos , Fatores Sexuais , Trombospondinas , Animais , Feminino , Masculino , Neurogênese , Neurônios , Ratos , Sinapses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA