Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Chem Biol ; 17(4): 394-402, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33462496

RESUMO

Efficient genome editing methods are essential for biotechnology and fundamental research. Homologous recombination (HR) is the most versatile method of genome editing, but techniques that rely on host RecA-mediated pathways are inefficient and laborious. Phage-encoded single-stranded DNA annealing proteins (SSAPs) improve HR 1,000-fold above endogenous levels. However, they are not broadly functional. Using Escherichia coli, Lactococcus lactis, Mycobacterium smegmatis, Lactobacillus rhamnosus and Caulobacter crescentus, we investigated the limited portability of SSAPs. We find that these proteins specifically recognize the C-terminal tail of the host's single-stranded DNA-binding protein (SSB) and are portable between species only if compatibility with this host domain is maintained. Furthermore, we find that co-expressing SSAPs with SSBs can significantly improve genome editing efficiency, in some species enabling SSAP functionality even without host compatibility. Finally, we find that high-efficiency HR far surpasses the mutational capacity of commonly used random mutagenesis methods, generating exceptional phenotypes that are inaccessible through sequential nucleotide conversions.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Edição de Genes/métodos , Recombinação Homóloga/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Caulobacter crescentus/metabolismo , DNA/química , DNA/genética , Reparo do DNA , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/química , Escherichia coli/metabolismo , Recombinação Homóloga/genética , Lactococcus/metabolismo , Mycobacterium smegmatis/metabolismo , Domínios Proteicos/genética
2.
J Am Chem Soc ; 134(51): 20812-9, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23198690

RESUMO

The first protocell membranes may have assembled from fatty acids and related single-chain lipids available in the prebiotic environment. Prior to the evolution of complex cellular machinery, spontaneous protocell membrane growth and division had to result from the intrinsic physicochemical properties of these molecules, in the context of specific environmental conditions. Depending on the nature of the chemical and physical environment, fatty acids can partition between several different phases, including soluble monomers, micelles, and lamellar vesicles. Here we address the concentration dependence of fatty acid aggregation, which is dominated by entropic considerations. We quantitatively distinguish between fatty acid phases using a combination of physical and spectroscopic techniques, including the use of the fluorescent fatty acid analogue Laurdan, whose emission spectrum is sensitive to structural differences between micellar and lamellar aggregates. We find that the monomer-aggregate transition largely follows a characteristic pseudophase model of molecular aggregation but that the composition of the aggregate phase is also concentration dependent. At low amphiphile concentrations above the critical aggregate concentration, vesicles coexist with a significant proportion of micelles, while more concentrated solutions favor the lamellar vesicle phase. We subsequently show that the micelle-vesicle equilibrium can be used to drive the growth of pre-existing vesicles upon an increase in amphiphile concentration either through solvent evaporation or following the addition of excess lipids. We propose a simple model for a primitive environmentally driven cell cycle, in which protocell membrane growth results from evaporative concentration, followed by shear force or photochemically induced division.


Assuntos
Células Artificiais/citologia , Membrana Celular/metabolismo , Ácidos Graxos/metabolismo , Células Artificiais/química , Células Artificiais/metabolismo , Evolução Biológica , Membrana Celular/química , Ácidos Graxos/química , Micelas , Transição de Fase , Tensoativos/química , Tensoativos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA