Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Chem Rev ; 123(15): 9327-9355, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294781

RESUMO

In response to the current trend of miniaturization of electronic devices and sensors, the complementary coupling of high-efficiency energy conversion and low-loss energy storage technologies has given rise to the development of photocapacitors (PCs), which combine energy conversion and storage in a single device. Photovoltaic systems integrated with supercapacitors offer unique light conversion and storage capabilities, resulting in improved overall efficiency over the past decade. Consequently, researchers have explored a wide range of device combinations, materials, and characterization techniques. This review provides a comprehensive overview of photocapacitors, including their configurations, operating mechanisms, manufacturing techniques, and materials, with a focus on emerging applications in small wireless devices, Internet of Things (IoT), and Internet of Everything (IoE). Furthermore, we highlight the importance of cutting-edge materials such as metal-organic frameworks (MOFs) and organic materials for supercapacitors, as well as novel materials in photovoltaics, in advancing PCs for a carbon-free, sustainable society. We also evaluate the potential development, prospects, and application scenarios of this emerging area of research.

2.
Chemistry ; 24(65): 17327-17338, 2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30403023

RESUMO

A lithium-selenium (Li-Se)-alkali activated carbon hybrid cell with a tungsten oxide interlayer is implemented for the first time. The Se hybrid at a Se loading of 70 % in the full Li-Se cell delivers a large reversible capacity of 625 mA h gSe -1 , in comparison with 505.8 mA h gSe -1 achieved for the pristine Se cell. This clearly shows the advantage of the carbon in improving the capacity of the Li-Se cell. A tungsten oxide interlayer is drop-cast over the battery separator to further circumvent the issues of polyselenide dissolution and shuttle, which cause severe capacity fading. The oxide layer conducts Li ions, as evidenced from the Li-ion diffusion coefficient of 4.2×10-9  cm2 s-1 , and simultaneously blocks the polyselenide crossover, as it is impermeable to polyselenides, thereby reducing the capacity fading with cycling. The outcome of this unique approach is reflected in the reversible capacities of 808 and 510 mA h gSe -1 achieved for the Li-oxide@separator/Se-alkali activated carbon cell before and after 100 cycles, respectively, thus demonstrating that carbon and oxide can efficiently restrict the capacity fading and improve the performances of Li-Se cells.

3.
Chemphyschem ; 18(7): 736-748, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28070927

RESUMO

Lead-sulfide-selenide (PbSSe) quantum dots (QDs) and gold-copper (AuCu) alloy nanoparticles (NPs) were incorporated into a cadmium sulfide (CdS)/titanium oxide (TiO2 ) photoanode for the first time to achieve enhanced conversion of solar energy into electricity. PbSSe QDs with a band gap of 1.02 eV extend the light-harvesting range of the photoanode from the visible region to the near-infrared region. The conduction band (CB) edge of the PbSSe QDs is wedged between the CBs of TiO2 and CdS; this additional level coupled with the good electrical conductivity of the dots facilitate charge transport and collection, and a high power conversion efficiency (PCE) of 4.44 % is achieved for the champion cell with the TiO2 /PbSSe/CdS electrode. Upon including AuCu alloy NPs in the QD-sensitized electrodes, light absorption is enhance by plasmonic and light-scattering effects and also by the injection of hot electrons to the CBs of the QDs. Comparison of the incident photon-to-current conversion efficiency enhancement factors in addition to fluorescence decay and impedance studies reveal that the PbSSe QDs and AuCu alloy NPs promote charge injection to the current collector and increase the photogenerated charges produced, which thus enables the TiO2 /PbSSe/CdS/AuCu cell to deliver the highest PCE of 5.26 % among all the various photoanode compositions used.

4.
Phys Chem Chem Phys ; 19(6): 4607-4617, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28124689

RESUMO

Charge transfer at the TiO2/quantum dots (QDs) interface, charge collection at the TiO2/QDs/current collector (FTO or SnO2:F) interface, and back electron transfer at the TiO2/QDs/S2- interface are processes controlled by the electron transport layer or TiO2. These key processes control the power conversion efficiencies (PCEs) of quantum dot solar cells (QDSCs). Here, four TiO2 morphologies, porous nanoparticles (PNPs), nanowires (NWs), nanosheets (NSHs) and nanoparticles (NPs), were sensitized with CdS and the photovoltaic performances were compared. The marked differences in the cell parameters on going from one morphology to the other have been explained by correlating the shape, structure and the above-described interfacial properties of a given TiO2 morphology to the said parameters. The average magnitudes of PCEs follow the order: NWs (5.96%) > NPs (4.95%) > PNPs (4.85%) > NSHs (2.5%), with the champion cell based on NWs exhibiting a PCE of 6.29%. For NWs, an optimal balance between the fast photo-excited electron injection to NWs at the NW/CdS interface, the high resistance offered at the TiO2 NW/CdS/S2- interfaces to electron recombination with the oxidized electrolyte or with the holes in CdS, the low electron transport resistance in NWs, and low dark currents, yields the highest efficiency due to directional unhindered transport of electrons afforded by the NWs. For NSHs, electron trapping in the two dimensional sheets, and a high electron recombination rate prevent the effective transfer of electrons to FTO, thus reducing short circuit current density significantly, resulting in a poor performance. This study provides a deep understanding of charge transfer, transport and collection processes necessary for the design of efficient QDSCs.

5.
Phys Chem Chem Phys ; 19(5): 4069-4077, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28111673

RESUMO

Towards increasing the stability of perovskite solar cells, the addition of Cs+ is found to be a rational approach. Recently triple cation based perovskite solar cells were found to be more effective in terms of stability and efficiency. Heretofore they were unexplored, so we probed the Cs/MA/FA (cesium/methyl ammonium/formamidinium) cation based perovskites by X-ray photoelectron spectroscopy (XPS) and correlated their compositional features with their solar cell performances. The Cs+ content was found to be optimum at 5%, when incorporated in the (MA0.15FA0.85)Pb(I0.85Br0.15)3 lattice, because the corresponding device yielded the highest fill factor compared to the perovskite without Cs+ and with 10% Cs+. XPS studies distinctly reveal how Cs+ aids in maintaining the expected stoichiometric ratios of I : Pb2+, I : N and Br : Pb2+ in the perovskites, and how the valence band (VB) edge is dependent on the Cs+ proportion, which in turn governs the open circuit voltage. Even at a low content of 5%, Cs+ resides deep within the absorber layer, and ensures minimum distortion of the VB level (compared to 0% and 10% Cs+ perovskites) upon Ar+ sputtering, thus allowing the formation of a stable robust material that delivers excellent solar cell response. This study which brings out the role of Cs+ is anticipated to be of paramount significance to further engineer the composition and improve device performances.

6.
Phys Chem Chem Phys ; 19(34): 22905-22914, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28812747

RESUMO

Triple cation based perovskite solar cells offer enhanced moisture tolerance and stability compared to mixed perovskites. Slight substitution of methyl ammonium or formamidinium cation by cesium (Cs+), was also reported to eliminate halide segregation due to its smaller size. To elucidate the device kinetics and understand the role of the Cs, we undertook different modes of scanning probe microscopy and electrochemical impedance spectroscopy (EIS) experiments. Kelvin probe force microscopy revealed that the incorporation of the Cs cation increases the contact potential difference (CPD), this CPD further increases when Spiro-OMeTAD is used as a hole transport material. The current at the nanoscale level shows improvement with Cs inclusion and further enhancement by the Spiro-OMeTAD deposition, studied under light illumination, which supports the high photocurrent density obtained from the cells. EIS demonstrates that in a triple cation environment, reduced carrier recombination at the TiO2/perovskite interface was also obtained which in turn allow us to achieve a higher Voc value.

7.
Phys Chem Chem Phys ; 19(38): 26330-26345, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28936513

RESUMO

Novel approaches to boost quantum dot solar cell (QDSC) efficiencies are in demand. Herein, three strategies are used: (i) a hydrothermally synthesized TiO2-multiwalled carbon nanotube (MWCNT) composite instead of conventional TiO2, (ii) a counter electrode (CE) that has not been applied to QDSCs until now, namely, tin sulfide (SnS) nanoparticles (NPs) coated over a conductive carbon (C)-fabric, and (iii) a quasi-solid-state gel electrolyte composed of S2-, an inert polymer and TiO2 nanoparticles as opposed to a polysulfide solution based hole transport layer. MWCNTs by virtue of their high electrical conductivity and suitably positioned Fermi level (below the conduction bands of TiO2 and PbS) allow fast photogenerated electron injection into the external circuit, and this is confirmed by a higher efficiency of 6.3% achieved for a TiO2-MWCNT/PbS/ZnS based (champion) cell, compared to the corresponding TiO2/PbS/ZnS based cell (4.45%). Nanoscale current map analysis of TiO2 and TiO2-MWCNTs reveals the presence of narrowly spaced highly conducting domains in the latter, which equips it with an average current carrying capability greater by a few orders of magnitude. Electron transport and recombination resistances are lower and higher respectively for the TiO2-MWCNT/PbS/ZnS cell relative to the TiO2/PbS/ZnS cell, thus leading to a high performance cell. The efficacy of SnS/C-fabric as a CE is confirmed from the higher efficiency achieved in cells with this CE compared to the C-fabric based cells. Lower charge transfer and diffusional resistances, slower photovoltage decay, high electrical conductance and lower redox potential impart high catalytic activity to the SnS/C-fabric assembly for sulfide reduction and thus endow the TiO2-MWCNT/PbS/ZnS cell with a high open circuit voltage (0.9 V) and a large short circuit current density (∼20 mA cm-2). This study attempts to unravel how simple strategies can amplify QDSC performances.

8.
Chemphyschem ; 17(6): 913-20, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26717046

RESUMO

The performance of perovskite solar cells is strongly influenced by the composition and microstructure of the perovskite. A recent approach to improve the power conversion efficiencies utilized mixed-halide perovskites, but the halide ions and their roles were not directly studied. Unraveling their precise location in the perovskite layer is of paramount importance. Here, we investigated four different perovskites by using X-ray photoelectron spectroscopy, and found that among the three studied mixed-halide perovskites, CH3 NH3 Pb(I0.74 Br0.26 )3 and CH3 NH3 PbBr3-x Clx show peaks that unambiguously demonstrate the presence of iodide and bromide in the former, and bromide and chloride in the latter. The CH3 NH3 PbI3-x Clx perovskite shows anomalous behavior, the iodide content far outweighs that of the chloride; a small proportion of chloride, in all likelihood, resides deep within the TiO2 /absorber layer. Our study reveals that there are many distinguishable structural differences between these perovskites, and that these directly impact the photovoltaic performances.

9.
Chemphyschem ; 16(5): 1042-51, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25690903

RESUMO

Poly(3,4-ethylenedioxythiophene) (PEDOT) films are deposited, using an electroless method, onto flexible plastic poly(ethylene terephthalate) (PET) substrates of approximately 20×6 cm(2). The sheet resistance of a PEDOT-PET film is approximately 600 Ω per square, and the nanoscale conductivity is 0.103 S cm(-1). A plastic electrochromic PEDOT-Prussian blue device is constructed. The device undergoes a color change of pale blue to deep violet-blue reversibly over 1000 cycles, thus demonstrating its use as a light-modulating smart window. The PEDOT-PET film is also used in a quantum dot solar cell, and the resulting photoelectrochemical performance and work function indicate that it is also promising for photovoltaic cells. The high homogeneity of the PEDOT deposit on PET, the optimal balance between conductivity and optical transparency, and the demonstration of its use in an electro-optical device and a solar cell, offer the opportunity to use this electrode material in a variety of low-cost optoelectronic devices.

10.
Chemphyschem ; 16(2): 377-89, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25371375

RESUMO

A poly(3,4-ethylenedioxypyrrole)-gold nanoparticle (Au)-tungsten oxide (PEDOP-Au@WO3 ) electrochromic supercapacitor electrode capable of optically modulating solar energy while simultaneously storing/releasing energy (in the form of charge) was fabricated for the first time. WO3 fibers, 50 to 200 nm long and 20 to 60 nm wide, were synthesized by a hydrothermal route and were electrophoretically deposited on a conducting substrate. Au nanoparticles and PEDOP were coated over WO3 to yield the PEDOP-Au@WO3 hybrid electrode. The inclusion of Au in the hybrid was confirmed by X-ray diffraction, Raman spectroscopy, and energy-dispersive X-ray analyses. The nanoscale electronic conductivity, coloration efficiency, and transmission contrast of the hybrid were found to be significantly greater than those of pristine WO3 and PEDOP. The hybrid showed a high specific discharge capacitance of 130 F g(-1) during coloration, which was four and ten times greater than the capacitance achieved in WO3 or PEDOP, respectively. We also demonstrate the ability of the PEDOP-Au@WO3 hybrid, relative to pristine PEDOP, to perform as a superior counter electrode in a solar cell, which is attributed to a higher work function. The capacitance and redox switching capability of the hybrid decreases insignificantly with cycling, thus establishing the viability of this multifunction hybrid for next-generation sustainable devices such as electrochromic psuedocapacitors because it can concurrently conserve and store energy.

11.
Chemphyschem ; 16(15): 3242-53, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26247745

RESUMO

A Bi2 S3 /graphene oxide (GO) composite enwrapped by a poly(3,4-ethylenedioxythiophene) (PEDOT) coating was prepared for the first time for use as an anode in Li-ion batteries. Pristine Bi2 S3 nanoflowers and composites of Bi2 S3 /GO and Bi2 S3 /GO/PEDOT were assembled into half cells with Li metal as the counter electrode, and initial discharge capacities of 833, 1020, and 1300 mAh g(-1) , respectively, were obtained. Composites of Bi2 S3 /GO/PEDOT and Bi2 S3 /GO showed superior cycling stability and better rate capability than pristine Bi2 S3 . GO provides highly conducting interconnections, which allow facile propagation of electrons during charge/discharge, and this improves the ion-uptake capability of the Bi2 S3 nanoflowers and also increases the rate capability. PEDOT furnishes a protective coating that prevents detachment of the material from the current collector during cycling, and it also imparts better cycling stability to the Bi2 S3 /GO/PEDOT composite.

12.
Phys Chem Chem Phys ; 17(15): 10040-52, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25785507

RESUMO

A novel photoanode architecture with plasmonic silver (Ag) nanostructures embedded in titania (TiO2), which served as the wide band gap semiconducting support and CdS quantum dots (QDs), as light absorbers, is presented. Ag nanostructures were prepared by a polyol method and are comprised of clumps of nanorods, 15-35 nm wide, interspersed with globular nanoparticles and they were characterized by a face centered cubic lattice. Optimization of Ag nanostructures was achieved on the basis of a superior power conversion efficiency (PCE) obtained for the cell with a Ag/TiO2/CdS electrode encompassing a mixed morphology of Ag nano-rods and particles, relative to analogous cells with either Ag nanoparticles or Ag nanorods. Interfacial charge transfer kinetics was unraveled by fluorescence quenching and lifetime studies. Ag nanostructures improve the light harvesting ability of the TiO2/CdS photoanode via (a) plasmonic and scattering effects, which induce both near- and far-field enhancements which translate to higher photocurrent densities and (b) charging effects, whereby, photoexcited electron transfer from TiO2 to Ag is facilitated by Fermi level equilibration. Owing to the spectacular ability of Ag nanostructures to increase light absorption, a greatly increased PCE of 4.27% and a maximum external quantum efficiency of 55% (at 440 nm) was achieved for the cell based on Ag/TiO2/CdS, greater by 42 and 66%, respectively, compared to the TiO2/CdS based cell. In addition, the liquid S(2-) electrolyte was replaced by a S(2-) gel containing fumed silica, and the redox potential, conductivity and p-type conduction of the two were deduced to be comparable. Although the gel based cells showed diminished solar cell performances compared to their liquid counterparts, nonetheless, the Ag/TiO2/CdS electrode continued to outperform the TiO2/CdS electrode. Our studies demonstrate that Ag nanostructures effectively capture a significant chunk of the electromagnetic spectrum and aid QD solar cells in delivering high power conversion efficiencies.

13.
Chemphyschem ; 15(6): 1106-15, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24677662

RESUMO

A simple strategy to improve the efficiency of a ZnO-nanorod-based dye-sensitized solar cell (DSSC) by use of Au-encapsulated carbon dots (Au@C-dots) in the photoanode is presented. The localized surface plasmonic resonance of Au in the 500-550 nm range coupled with the ability of C-dots to undergo charge separation increase the energy-harvesting efficiency of the DSSC with ZnO/N719/Au@C-dots photoanodes. Charge transfer from N719 dye to Au@C-dots is confirmed by fluorescence and lifetime enhancements of Au@C-dots. Forster resonance energy transfer (FRET) from the gap states of ZnO nanorods to N719 dye is also ratified and the energy transfer rate is 4.4×10(8) s(-1) and the Forster radius is 1.89 nm. The overall power conversion efficiency of the plasmonic and FRET-enabled DSSC with ZnO/N719/Au@C-dots as the photoanode, I2/I(-) as the electrolyte and multiwalled carbon nanotubes as the counter electrode is 4.1%, greater by 29% compared to a traditional ZnO/N719 cell.

14.
Phys Chem Chem Phys ; 16(5): 2062-71, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24343566

RESUMO

Composites of poly(3,4-ethylenedioxypyrrole) or PEDOP and poly(3,4-ethylenedioxythiophene) or PEDOT enwrapped Sb2S3 nanorods have been synthesized for the first time for use as supercapacitor electrodes. Hydrothermally synthesized Sb2S3 nanorods, several microns in length and 50-150 nm wide, offer high surface area and serve as a scaffold for coating conducting polymers, and are a viable alternative to carbon nanostructures. Fibrillar morphologies are achieved for the PEDOP-Sb2S3 and PEDOT-Sb2S3 films in contrast to the regular granular topologies attained for the neat polymers. The remarkably high nanoscale (∼5 S cm(-1)) conductivity of the Sb2S3 nanorods enables facile electron transport in the composites. We constructed asymmetric supercapacitors using the neat polymer or composite and graphite as electrodes. High specific capacitances of 1008 F g(-1) and 830 F g(-1) (at 1 A g(-1)), enhanced power densities (504 and 415 W kg(-1)) and excellent cycling stability (88 and 85% capacitance retention at the end of 1000 cycles) are delivered by the PEDOP-Sb2S3 and PEDOT-Sb2S3 cells relative to the neat polymer cells. A demonstration of a light emitting diode illumination using a light-weight, flexible, supercapacitor fabricated with PEDOP-Sb2S3 and carbon-fiber cloth shows the applicability of Sb2S3 enwrapped conducting polymers as sustainable electrodes for ultra-thin supercapacitors.

15.
Phys Chem Chem Phys ; 16(45): 24691-6, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25315711

RESUMO

Organic-inorganic hybrid perovskite solar cells with fluorine doped tin oxide/titanium dioxide/CH3NH3PbI3-xClx/poly(3-hexylthiophene)/silver were made in air with more than 50% humidity. The best devices showed an open circuit voltage of 640 mV, a short circuit current density of 18.85 mA cm(-2), a fill factor of 0.407 and a power conversion efficiency of 5.67%. The devices showed external quantum efficiency varying from 60 to 80% over a wavelength region of 350 nm to 750 nm of the solar spectrum. The morphology of the perovskite was investigated using scanning electron microscopy and it was found to be porous in nature. This study provides insights into air-stability of perovskite solar cells.

16.
Chemphyschem ; 14(17): 4010-21, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24259302

RESUMO

A new design for a quasi-solid-state Forster resonance energy transfer (FRET) enabled solar cell with unattached Lucifer yellow (LY) dye molecules as donors and CdS/CdSe quantum dots (QDs) tethered to titania (TiO2 ) as acceptors is presented. The Forster radius is experimentally determined to be 5.29 nm. Sequential energy transfer from the LY dye to the QDs and electron transfer from the QDs to TiO2 is followed by fluorescence quenching and electron lifetime studies. Cells with a donor-acceptor architecture (TiO2 /CdS/CdSe/ZnS-LY/S(2-)-multi-walled carbon nanotubes) show a maximum incident photon-to-current conversion efficiency of 53 % at 530 nm. This is the highest efficiency among Ru-dye free FRET-enabled quantum dot solar cells (QDSCs), and is much higher than the donor or acceptor-only cells. The FRET-enhanced solar cell performance over the majority of the visible spectrum paves the way to harnessing the untapped potential of the LY dye as an energy relay fluorophore for the entire gamut of dye sensitized, organic, or hybrid solar cells.

17.
ACS Appl Mater Interfaces ; 15(30): 36262-36279, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37470169

RESUMO

Vanadium based oxides are immensely suitable for zinc-ion-batteries (ZIBs) due to their layered and stable crystal structures. In this study, Mn doped V3O7·H2O nanobelts were synthesized and used as cathodes in ZIBs for the very first time and the doped oxide exhibited an enhanced capacity of 258 mAh g-1 compared to its undoped counterpart (208 mAh g-1) at the same current density of 40 mA g-1. Mn:V3O7·H2O outperforms the V3O7·H2O due to the superior bulk electrical conductivity as well as higher nanoscale current carrying capability imparted by a high proportion of mixed valent states of Mn3+, Mn2+, V5+, and V4+ and the smaller crystallite size that affords short diffusion lengths for Zn2+ ions. The Mn:V3O7·H2O cathode is coupled with a Zn2+ ion conducting polyacrylamide gel electrolyte and a Zn flakes/activated carbon (Zn Fs/C) composite anode to yield a unique separator free Mn:V3O7·H2O/Zn2+-PAM gel/Zn-Fs/C battery. The cell exhibits a capacity of ∼205 mAh g-1 (at 40 mA g-1) and retains 99% of its original capacity after 3500 cycles. The Zn2+-PAM gel shows a high ionic conductivity in the range of 5.9 to 28.2 S cm-1, over a wide temperature span of 0 to 70 °C, and a wide electrochemical potential stability window of -0.5 to +2.3 V, thus rendering it suitable for low temperature applications as well. The gel also inhibits dendritic growth of Zn over the Zn-Fs/C anode through regulated flow of Zn2+ ions during charging, prevents cathode dissolution, and improves cycle life via preservation of structural integrity of the Mn:V3O7·H2O cathode after 200 charge-discharge cycles. This is a highly scalable cell configuration and opens up opportunities to produce long lasting batteries completely free of costly separators with a semisolid free-standing electrolyte and a robust doped oxide.

18.
Phys Chem Chem Phys ; 14(2): 767-78, 2012 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-22108634

RESUMO

Electron transfer dynamics in a photoactive coating made of CdSe quantum dots (QDs) and Au nanoparticles (NPs) tethered to a framework of ionic liquid functionalized graphene oxide (FGO) nanosheets and mesoporous titania (TiO(2)) was studied. High resolution transmission electron microscopy analyses on TiO(2)/CdSe/FGO/Au not only revealed the linker mediated binding of CdSe QDs with TiO(2) but also, surprisingly, revealed a nanoscale connectivity between CdSe QDs, Au NPs and TiO(2) with FGO nanosheets, achieved by a simple solution processing method. Time resolved fluorescence decay experiments coupled with the systematic quenching of CdSe emission by Au NPs or FGO nanosheets or by a combination of the latter two provide concrete evidences favoring the most likely pathway of ultrafast decay of excited CdSe in the composite to be a relay mechanism. A balance between energetics and kinetics of the system is realized by alignment of conduction band edges, whereby, CdSe QDs inject photogenerated electrons into the conduction band of TiO(2), from where, electrons are promptly transferred to FGO nanosheets and then through Au NPs to the current collector. Conductive-atomic force microscopy also provided a direct correlation between the local nanostructure and the enhanced ability of composite to conduct electrons. Point contact I-V measurements and average photoconductivity results demonstrated the current distribution as well as the population of conducting domains to be uniform across the TiO(2)/CdSe/FGO/Au composite, thus validating the higher photocurrent generation. A six-fold enhancement in photocurrent and a 100 mV increment in photovoltage combined with an incident photon to current conversion efficiency of 27%, achieved in the composite, compared to the inferior performance of the TiO(2)/CdSe/Au composite imply that FGO nanosheets and Au NPs work in tandem to promote charge separation and furnish less impeded pathways for electron transfer and transport. Such a hierarchical rapid electron transfer model can be adapted to other nanostructures as well, as they can favorably impact photoelectrochemical performance.

19.
ACS Omega ; 7(50): 46311-46324, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36570208

RESUMO

Antimony nanorods (SbNRs) anchored to vertically aligned SiNWs serve as cosensitizers and enhance the light absorption of NWs, and their favorably positioned valence band (VB) coupled with their p-type semiconducting nature allows fast hole extraction from SiNWs. Photocorrosion of SiNWs is effectively prevented by a monolayer of N-[3-(trimethoxysilyl)propyl]aniline (TMSPA). Upon assembling a quasi-solid-state solar cell with a SbNRs@TMSPA@SiNW photoanode, a triiodide-iodide (I3 -/I-) redox couple-based gel encompassing dispersed p-type cuprous oxide nanocubes (Cu2O NCs) as the hole transport material. and an electrocatalytic NiO as the counter electrode, a power conversion efficiency (PCE) of 4.7% (under 1 sun) is achieved, which is greater by 177% relative to an analogous cell devoid of the Cu2O NCs and SbNRs. SbNRs at the photoanode maximize charge separation and suppress electron-hole and electron-I3 - recombination at the photoanode/electrolyte interface, thereby improving the overall current collection efficiency. Concurrently, the Cu2O NCs facilitate hole scavenging from SbNRs or SiNWs and relay them rapidly to the I- ions in the electrolyte. Optically transparent and mesoporous NiO with a VB conducive to accepting electrons from FTO permits abundant interaction with I3 - ions. The high PCE is a cumulative outcome of the synergistic attributes of SbNRs, Cu2O NCs, and NiO. The SbNRs@TMSPA@SiNWs/Cu2O-gel/NiO solar cell also exhibits a noteworthy operational stability, for it endures 500 h of continuous 1 sun illumination accompanied by an ∼24.4% drop in its PCE. The solar cell architecture in view of the judiciously chosen components with favorable energy level offsets, semiconducting/photoactive properties, and remarkable stability opens up pathways to adapt these materials to other solar cells as well.

20.
Chemphyschem ; 12(6): 1176-88, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21480457

RESUMO

Poly(3,4-ethylenedioxypyrrole) (PEDOP)-Ag and PEDOP-Au nanocomposite films have been synthesized for the first time by electropolymerization of the conducting-polymer precursor in a waterproof ionic liquid, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, followed by Ag/Au nanoparticle incorporation. That the Ag/Au nanoparticles are not adventitious entities in the film is confirmed by a) X-ray photoelectron spectroscopy, which provides evidence of Ag/Au-PEDOP interactions through chemical shifts of the Ag/Au core levels and new signals due to Ag-N(H) and Au-N(H) components, and b) electron microscopy, which reveals Au nanoparticles with a face-centered-cubic crystalline structure associated with the amorphous polymer. Spectroelectrochemistry of electrochromic devices based on PEDOP-Au show a large coloring efficiency (η(max) =270 cm(2) C(-1), λ=458 nm) in the visible region, for an orange/red to blue reversible transition, followed by a second, remarkably high η(max) of 490 cm(2) C(-1) (λ=1000 nm) in the near-infrared region as compared to the much lower values achieved for the neat PEDOP analogue. Electrochemical impedance spectroscopy studies reveal that the metal nanoparticles lower charge-transfer resistance and facilitate ion intercalation-deintercalation, which manifests in enhanced performance characteristics. In addition, significantly faster color-bleach kinetics (five times of that of neat PEDOP!) and a larger electrochemical ion insertion capacity unambiguously demonstrate the potential such conducting-polymer nanocomposites have for smart window applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA