RESUMO
Leber congenital amaurosis (LCA) and early-onset retinal degeneration (EORD) are inherited retinal diseases (IRD) characterized by early-onset vision impairment. Herein, we studied 15 Saudi families by whole exome sequencing (WES) and run-of-homozygosity (ROH) detection via AutoMap in 12/15 consanguineous families. This revealed (likely) pathogenic variants in 11/15 families (73%). A potential founder variant was found in RPGRIP1. Homozygous pathogenic variants were identified in known IRD genes (ATF6, CRB1, CABP4, RDH12, RIMS2, RPGRIP1, SPATA7). We established genotype-driven clinical reclassifications for ATF6, CABP4, and RIMS2. Specifically, we observed isolated IRD in the individual with the novel RIMS2 variant, and we found a retina-enriched RIMS2 isoform conserved but not annotated in mouse. The latter illustrates potential different phenotypic consequences of pathogenic variants depending on the particular tissue/cell-type specific isoforms they affect. Lastly, a compound heterozygous genotype in GUCY2D in one non-consanguineous family was demonstrated, and homozygous variants in novel candidate genes ATG2B and RUFY3 were found in the two remaining consanguineous families. Reporting these genes will allow to validate them in other IRD cohorts. Finally, the missing heritability of the two unsolved IRD cases may be attributed to variants in non-coding regions or structural variants that remained undetected, warranting future WGS studies.
Assuntos
Consanguinidade , Sequenciamento do Exoma , Linhagem , Fenótipo , Humanos , Feminino , Masculino , Retina/patologia , Homozigoto , Doenças Retinianas/genética , Isoformas de Proteínas/genética , Exoma/genética , Mutação , Criança , Predisposição Genética para Doença , Amaurose Congênita de Leber/genética , Estudos de Coortes , Genótipo , Estudos de Associação Genética/métodosRESUMO
PRPH2, one of the most frequently inherited retinal dystrophy (IRD)-causing genes, implies a high phenotypic variability. This study aims to analyze the PRPH2 mutational spectrum in one of the largest cohorts worldwide, and to describe novel pathogenic variants and genotype-phenotype correlations. A study of 220 patients from 103 families recruited from a database of 5000 families. A molecular diagnosis was performed using classical molecular approaches and next-generation sequencing. Common haplotypes were ascertained by analyzing single-nucleotide polymorphisms. We identified 56 variants, including 11 novel variants. Most of them were missense variants (64%) and were located in the D2-loop protein domain (77%). The most frequently occurring variants were p.Gly167Ser, p.Gly208Asp and p.Pro221_Cys222del. Haplotype analysis revealed a shared region in families carrying p.Leu41Pro or p.Pro221_Cys222del. Patients with retinitis pigmentosa presented an earlier disease onset. We describe the largest cohort of IRD families associated with PRPH2 from a single center. Most variants were located in the D2-loop domain, highlighting its importance in interacting with other proteins. Our work suggests a likely founder effect for the variants p.Leu41Pro and p.Pro221_Cys222del in our Spanish cohort. Phenotypes with a primary rod alteration presented more severe affectation. Finally, the high phenotypic variability in PRPH2 hinders the possibility of drawing genotype-phenotype correlations.
Assuntos
Distrofias Retinianas , Retinose Pigmentar , Humanos , Análise Mutacional de DNA , Mutação , Mutação de Sentido Incorreto , Fenótipo , Distrofias Retinianas/genética , Retinose Pigmentar/genéticaRESUMO
Screening for pathogenic variants in the diagnosis of rare genetic diseases can now be performed on all genes thanks to the application of whole exome and genome sequencing (WES, WGS). Yet the repertoire of gene-disease associations is not complete. Several computer-based algorithms and databases integrate distinct gene-gene functional networks to accelerate the discovery of gene-disease associations. We hypothesize that the ability of every type of information to extract relevant insights is disease-dependent. We compiled 33 functional networks classified into 13 knowledge categories (KCs) and observed large variability in their ability to recover genes associated with 91 genetic diseases, as measured using efficiency and exclusivity. We developed GLOWgenes, a network-based algorithm that applies random walk with restart to evaluate KCs' ability to recover genes from a given list associated with a phenotype and modulates the prediction of new candidates accordingly. Comparison with other integration strategies and tools shows that our disease-aware approach can boost the discovery of new gene-disease associations, especially for the less obvious ones. KC contribution also varies if obtained using recently discovered genes. Applied to 15 unsolved WES, GLOWgenes proposed three new genes to be involved in the phenotypes of patients with syndromic inherited retinal dystrophies.
Assuntos
Algoritmos , Doenças Raras , Humanos , Doenças Raras/genética , Fenótipo , Mapeamento CromossômicoRESUMO
The introduction of NGS in genetic diagnosis has increased the repertoire of variants and genes involved and the amount of genomic information produced. We built an allelic-frequency (AF) database for a heterogeneous cohort of genetic diseases to explore the aggregated genomic information and boost diagnosis in inherited retinal dystrophies (IRD). We retrospectively selected 5683 index-cases with clinical exome sequencing tests available, 1766 with IRD and the rest with diverse genetic diseases. We calculated a subcohort's IRD-specific AF and compared it with suitable pseudocontrols. For non-solved IRD cases, we prioritized variants with a significant increment of frequencies, with eight variants that may help to explain the phenotype, and 10/11 of uncertain significance that were reclassified as probably pathogenic according to ACMG. Moreover, we developed a method to highlight genes with more frequent pathogenic variants in IRD cases than in pseudocontrols weighted by the increment of benign variants in the same comparison. We identified 18 genes for further studies that provided new insights in five cases. This resource can also help one to calculate the carrier frequency in IRD genes. A cohort-specific AF database assists with variants and genes prioritization and operates as an engine that provides a new hypothesis in non-solved cases, augmenting the diagnosis rate.
Assuntos
Distrofias Retinianas , Estudos de Coortes , Genômica , Humanos , Mutação , Linhagem , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética , Estudos Retrospectivos , Sequenciamento do ExomaRESUMO
Mutations in Retinitis pigmentosa GTPase regulator gene (RPGR) are the most common cause of X-linked retinitis pigmentosa (RP). Almost 60% of disease-causing RPGR mutations are located in ORF-15 region which cannot be detected by Next Generation Sequencing (NGS) due to the existence of highly repetitive regions. An Iranian family with a priori diagnosis of autosomal dominant RP was studied by Sanger sequencing of ORF15 of RPGR gene after an inconclusive NGS result. A frameshift two-base-pair deletion (c.2323_2324del, p.Arg775Glufs*59) in this region was segregating in both affected hemizygous males and affected homozygous females. To our knowledge, this is the first example of homozygous females for RPGR-ORF15 mutations.
Assuntos
Proteínas do Olho/genética , Genes Ligados ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Mutação/genética , Fases de Leitura Aberta/genética , Retinose Pigmentar/genética , Povo Asiático/genética , Criança , Consanguinidade , Análise Mutacional de DNA , Éxons/genética , Feminino , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Irã (Geográfico)/epidemiologia , Masculino , Linhagem , Retinose Pigmentar/epidemiologiaRESUMO
BACKGROUND: Bardet-Biedl syndrome is an autosomal recessive disease characterized by rod-cone dystrophy, postaxial polydactyly, kidney defects, obesity, mental retardation and hypogonadism. Here, we report different genotypes in two Bardet-Biedl syndrome affected sisters with a different clinical phenotype regarding severity. MATERIALS AND METHODS: The proband of the family was examined by Next Generation Sequencing (NGS) using clinical exome and filtering by syndromic and non-syndromic genes associated with retinal dystrophies. RESULTS: Targeted NGS revealed two novel variants in the MKKS and CEP290 genes in homozygosis state in the proband. Segregation analysis revealed the presence of the same MKKS homozygous variant in her younger affected sister but not the CEP290 variant. Both sisters presented different clinical manifestation, at different ages, with a more severe renal and retinal defect in the case of the sister carrying mutations in both genes. Another unaffected sister showed only homozygosity for the CEP290 variant, thus supporting the non-pathogenic role of this mutation in BBS phenotype. CONCLUSIONS: In this study, NGS proved to be a powerful and efficient sequencing method to identify causal variants in different genes. However, it remarks the importance of the segregation analysis and clinical information to establish the pathogenicity of new variants. The two affected sisters present different genotypes and clinical manifestation, suggesting that the novel CEP290 variant could be acting as a modifier, making the phenotype more severe in the sister homozygote for MKKS and CEP290 genes. On the other hand, the difference in the age of both sisters highlight the important role of monitoring disease progression also to confirm the modifier role of genetic variants.
Assuntos
Antígenos de Neoplasias/genética , Povo Asiático/genética , Proteínas de Ciclo Celular/genética , Consanguinidade , Proteínas do Citoesqueleto/genética , Chaperoninas do Grupo II/genética , Retinose Pigmentar/genética , Síndrome de Bardet-Biedl/genética , Pré-Escolar , Análise Mutacional de DNA , Eletrorretinografia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Irã (Geográfico)/epidemiologia , Mutação de Sentido Incorreto , Linhagem , Retina/fisiopatologia , Retinose Pigmentar/diagnóstico por imagem , Retinose Pigmentar/fisiopatologia , Síndrome , Tomografia de Coerência Óptica , Adulto JovemRESUMO
INTRODUCTION: Biallelic pathogenic RPE65 variants are related to a spectrum of clinically overlapping inherited retinal dystrophies (IRD). Most affected individuals progress to severe disease, with 50% of patients becoming legally blind by 20 years of age. Deeper knowledge of the mutational spectrum and the phenotype-genotype correlation in RPE65-related IRD is needed. PATIENTS AND METHODS: Forty-five affected subjects from 27 unrelated families with a clinical diagnosis of RPE65-related IRD were included. Clinical evaluation consisted of self-reported ophthalmological history and objective ophthalmological examination. Patients' genotype was classified according to variant class (truncating or missense) or to variant location at different protein domains. The main phenotypic outcome measure was age at onset (AAO) of symptomatic disease and a Kaplan-Meier analysis of disease symptom event-free survival was performed. RESULTS: Twenty-nine different RPE65 variants were identified in our cohort, 7 of them novel. Patients carrying two missense alleles showed a later disease onset than those with 1 or 2 truncating variants (log-rank test p <0.05). While 60% of patients carrying a missense/missense genotype presented symptoms before or during the first year of life, almost all patients with at least 1 truncating allele (91%) had an AAO ≤1 year (p <0.05). CONCLUSION: Our findings suggest an association between the type of RPE65 variant carried and AAO. These findings provide useful data on RPE65-associated IRD phenotypes and may help improve clinical and therapeutic management of these patients.
Assuntos
DNA/genética , Estudos de Associação Genética/métodos , Mutação , Distrofias Retinianas/genética , cis-trans-Isomerases/genética , Adolescente , Alelos , Criança , Pré-Escolar , Análise Mutacional de DNA , Eletrorretinografia , Feminino , Genótipo , Humanos , Lactente , Masculino , Linhagem , Fenótipo , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/metabolismo , Adulto Jovem , cis-trans-Isomerases/metabolismoRESUMO
Pathogenic variants in the ATP-binding cassette transporter A4 (ABCA4) gene cause a continuum of retinal disease phenotypes, including Stargardt disease. Noncanonical splice site (NCSS) and deep-intronic variants constitute a large fraction of disease-causing alleles, defining the functional consequences of which remains a challenge. We aimed to determine the effect on splicing of nine previously reported or unpublished NCSS variants, one near exon splice variant and nine deep-intronic variants in ABCA4, using in vitro splice assays in human embryonic kidney 293T cells. Reverse transcription-polymerase chain reaction and Sanger sequence analysis revealed splicing defects for 12 out of 19 variants. Four deep-intronic variants create pseudoexons or elongate the upstream exon. Furthermore, eight NCSS variants cause a partial deletion or skipping of one or more exons in messenger RNAs. Among the 12 variants, nine lead to premature stop codons and predicted truncated ABCA4 proteins. At least two deep-intronic variants affect splice enhancer and silencer motifs and, therefore, these conserved sequences should be carefully evaluated when predicting the outcome of NCSS and deep-intronic variants.
Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Mutação , Sítios de Splice de RNA , Doenças Retinianas/genética , Processamento Alternativo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Íntrons , Fenótipo , Análise de Sequência de DNARESUMO
PURPOSE: We aimed to unravel the molecular basis of sporadic retinitis pigmentosa (sRP) in the largest cohort reported to date. DESIGN: Case series. PARTICIPANTS: A cohort of 877 unrelated Spanish sporadic cases with a clinical diagnosis of retinitis pigmentosa (RP) and negative family history. METHODS: The cohort was studied by classic genotyping or targeted next-generation sequencing (NGS). Multiplex ligation-dependent probe amplification (MLPA) and array-based comparative genomic hybridization were performed to confirm copy number variations detected by NGS. Quantitative fluorescent polymerase chain reaction was assessed in sRP cases carrying de novo variants to confirm paternity. MAIN OUTCOME MEASURES: The study of the sRP cohort showed a high proportion of causal autosomal dominant (AD) and X-linked (XL) variants, most of them being de novo. RESULTS: Causative variants were identified in 38% of the patients studied, segregating recessively in 84.5% of the solved cases. Biallelic variants detected in only 6 different autosomal recessive genes explained 50% of the cases characterized. Causal AD and XL variants were found in 7.6% and 7.9% of cases, respectively. Remarkably, 20 de novo variants were confirmed after trio analysis, explaining 6% of the cases. In addition, 17% of the solved sRP cases were reclassified to a different retinopathy phenotype. CONCLUSIONS: This study highlights the clinical utility of NGS testing for sRP cases, expands the mutational spectrum, and provides accurate prevalence of mutated genes. Our findings evidence the underestimated role of de novo variants in the etiology of RP, emphasizing the importance of segregation analysis as well as comprehensive screening of genes carrying XL and AD variants in sporadic cases. Such in-depth study is essential for accurate family counseling and future enrollment in gene therapy-based treatments.
Assuntos
Retinose Pigmentar/genética , Adulto , Estudos de Coortes , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Análise Mutacional de DNA/métodos , Feminino , Genes Recessivos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , FenótipoRESUMO
BACKGROUND: 5' untranslated regions (5'UTRs) are essential modulators of protein translation. Predicting the impact of 5'UTR variants is challenging and rarely performed in routine diagnostics. Here, we present a combined approach of a comprehensive prioritization strategy and functional assays to evaluate 5'UTR variation in two large cohorts of patients with inherited retinal diseases (IRDs). METHODS: We performed an isoform-level re-analysis of retinal RNA-seq data to identify the protein-coding transcripts of 378 IRD genes with highest expression in retina. We evaluated the coverage of their 5'UTRs by different whole exome sequencing (WES) kits. The selected 5'UTRs were analyzed in whole genome sequencing (WGS) and WES data from IRD sub-cohorts from the 100,000 Genomes Project (n = 2397 WGS) and an in-house database (n = 1682 WES), respectively. Identified variants were annotated for 5'UTR-relevant features and classified into seven categories based on their predicted functional consequence. We developed a variant prioritization strategy by integrating population frequency, specific criteria for each category, and family and phenotypic data. A selection of candidate variants underwent functional validation using diverse approaches. RESULTS: Isoform-level re-quantification of retinal gene expression revealed 76 IRD genes with a non-canonical retina-enriched isoform, of which 20 display a fully distinct 5'UTR compared to that of their canonical isoform. Depending on the probe design, 3-20% of IRD genes have 5'UTRs fully captured by WES. After analyzing these regions in both cohorts, we prioritized 11 (likely) pathogenic variants in 10 genes (ARL3, MERTK, NDP, NMNAT1, NPHP4, PAX6, PRPF31, PRPF4, RDH12, RD3), of which 7 were novel. Functional analyses further supported the pathogenicity of three variants. Mis-splicing was demonstrated for the PRPF31:c.-9+1G>T variant. The MERTK:c.-125G>A variant, overlapping a transcriptional start site, was shown to significantly reduce both luciferase mRNA levels and activity. The RDH12:c.-123C>T variant was found in cis with the hypomorphic RDH12:c.701G>A (p.Arg234His) variant in 11 patients. This 5'UTR variant, predicted to introduce an upstream open reading frame, was shown to result in reduced RDH12 protein but unaltered mRNA levels. CONCLUSIONS: This study demonstrates the importance of 5'UTR variants implicated in IRDs and provides a systematic approach for 5'UTR annotation and validation that is applicable to other inherited diseases.
Assuntos
Nicotinamida-Nucleotídeo Adenililtransferase , Doenças Retinianas , Humanos , Regiões 5' não Traduzidas , c-Mer Tirosina Quinase , Retina , Doenças Retinianas/genética , Isoformas de Proteínas , Oxirredutases do ÁlcoolRESUMO
Introduction: Inherited retinal dystrophies (IRDs) can be caused by variants in more than 280 genes. The ATP-binding cassette transporter type A4 (ABCA4) gene is one of these genes and has been linked to Stargardt disease type 1 (STGD1), fundus flavimaculatus, cone-rod dystrophy (CRD), and pan-retinal CRD. Approximately 25% of the reported ABCA4 variants affect RNA splicing. In most cases, it is necessary to perform a functional assay to determine the effect of these variants. Methods: Whole genome sequencing (WGS) was performed in one Spanish proband with Stargardt disease. The putative pathogenicity of c.6480-35A>G on splicing was investigated both in silico and in vitro. The in silico approach was based on the deep-learning tool SpliceAI. For the in vitro approach we used a midigene splice assay in HEK293T cells, based on a previously established wild-type midigene (BA29) containing ABCA4 exons 46 to 48. Results: Through the analysis of WGS data, we identified two candidate variants in ABCA4 in one proband: a previously described deletion, c.699_768+342del (p.(Gln234Phefs*5)), and a novel branchpoint variant, c.6480-35A>G. Segregation analysis confirmed that the variants were in trans. For the branchpoint variant, SpliceAI predicted an acceptor gain with a high score (0.47) at position c.6480-47. A midigene splice assay in HEK293T cells revealed the inclusion of the last 47 nucleotides of intron 47 creating a premature stop codon and allowed to categorize the variant as moderately severe. Subsequent analysis revealed the presence of this variant as a second allele besides c.1958G>A p.(Arg653His) in an additional Spanish proband in a large cohort of IRD cases. Conclusion: A splice-altering effect of the branchpoint variant, confirmed by the midigene splice assay, along with the identification of this variant in a second unrelated individual affected with STGD, provides sufficient evidence to classify the variant as likely pathogenic. In addition, this research highlights the importance of studying non-coding regions and performing functional assays to provide a conclusive molecular diagnosis.
RESUMO
Clonal hematopoiesis, especially that of indeterminate potential (CHIP), has been associated with age-related diseases, such as those contributing to a more severe COVID-19. Four studies have attempted to associate CHIP with COVID-19 severity without conclusive findings. In the present work, we explore the association between CHIP and COVID-19 mortality. Genomic DNA extracted from peripheral blood of COVID-19 patients (n = 241 deceased, n = 239 survivors) was sequenced with the Myeloid Solutions™ panel of SOPHiA Genetics. The association between clonality and age and clonality and mortality was studied using logistic regression models adjusted for sex, ethnicity, and comorbidities. The association with mortality was performed with patients stratified into four groups of age according to the quartiles of the distribution: 60-74 years, 75-84 years, 85-91 years, and 92-101 years. Clonality was found in 38% of the cohort. The presence of CHIP variants, but not the number, significantly increased with age in the entire cohort of COVID-19 patients, as well as in the group of survivors (p < 0.001). When patients were stratified by age and the analysis adjusted, CHIP classified as pathogenic/likely pathogenic was significantly more represented in deceased patients compared with survivors in the group of 75-84 years (34.6% vs 13.7%, p = 0.020). We confirmed the well-established linear relationship between age and clonality in the cohort of COVID-19 patients and found a significant association between pathogenic/likely pathogenic CHIP and mortality in patients from 75 to 84 years that needs to be further validated.
Assuntos
COVID-19 , Hematopoiese Clonal , Humanos , Idoso , Hematopoese/genética , ComorbidadeRESUMO
PURPOSE: To describe the genetic and clinical spectrum of GUCY2D-associated retinopathies and to accurately establish their prevalence in a large cohort of patients. DESIGN: Retrospective case series. METHODS: Institutional study of 47 patients from 27 unrelated families with retinal dystrophies carrying disease-causing GUCY2D variants from the Fundación Jiménez Díaz hospital dataset of 8000 patients. Patients underwent ophthalmological examination and molecular testing by Sanger or exome sequencing approaches. Statistical and principal component analyses were performed to determine genotype-phenotype correlations. RESULTS: Four clinically different associated phenotypes were identified: 66.7% of families with cone/cone-rod dystrophy, 22.2% with Leber congenital amaurosis, 7.4% with early-onset retinitis pigmentosa, and 3.7% with congenital night blindness. Twenty-three disease-causing GUCY2D variants were identified, including 6 novel variants. Biallelic variants accounted for 28% of patients, whereas most carried dominant alleles associated with cone/cone-rod dystrophy. The disease onset had statistically significant differences according to the functional variant effect. Patients carrying GUCY2D variants were projected into 3 subgroups by allelic combination, disease onset, and presence of nystagmus or night blindness. In contrast to patients with the most severe phenotype of Leber congenital amaurosis, 7 patients with biallelic GUCY2D had a later and milder rod form with night blindness in infancy as the first symptom. CONCLUSIONS: This study represents the largest GUCY2D cohort in which 4 distinctly different phenotypes were identified, including rare intermediate presentations of rod-dominated retinopathies. We established that GUCY2D is linked to about 1% of approximately 3000 molecularly characterized families of our cohort. All of these findings are critical for defining cohorts for inclusion in future clinical trials.
Assuntos
Distrofias de Cones e Bastonetes , Amaurose Congênita de Leber , Cegueira Noturna , Humanos , Distrofias de Cones e Bastonetes/diagnóstico , Distrofias de Cones e Bastonetes/genética , Genótipo , Amaurose Congênita de Leber/diagnóstico , Amaurose Congênita de Leber/genética , Mutação , Cegueira Noturna/diagnóstico , Cegueira Noturna/genética , Linhagem , Fenótipo , Estudos RetrospectivosRESUMO
Purpose: To assess the potential of next-generation sequencing (NGS) technologies to characterize cases diagnosed with autosomal recessive (ar) or sporadic (s) macular dystrophies (ar/sMD) and describe their mutational spectrum. Methods: A cohort of 1036 families was classified according to their suspected clinical diagnosis-Stargardt disease (STGD), cone and cone-rod dystrophy (CCRD) or other maculopathies (otherMD). Molecular studies included genotyping microarrays, Sanger sequencing, NGS, and sequencing of intronic regions of the ABCA4 gene. Clinical reclassification was done after the genetic study. Results: At the end of the study, 677 patients (65%) had a confirmed genetic diagnosis, representing 78%, 63%, and 38% of STGD, CCRD, and otherMD groups of patients, respectively. ABCA4 is the most mutated gene in all groups, and a second pathogenic variant was found in 76% of STGD patients with one previously identified mutated ABCA4 allele. Autosomal dominant or X-linked mutations were found in 5% of cases together with not-MD genes (CHM, EYS, RHO, RPGR, RLBP1, OPA1, and USH2A among others) leading to their reclassification. Novel variants in the very rare genes PLA2G5 and TTLL5 revealed additional phenotypic associations. Conclusions: This study provides for the first time a genetic landscape of 1036 ar/sMD families according to their suspected diagnosis. The analysis of >200 genes associated with retinal dystrophies and the entire locus of ABCA4 increase the rate of characterization, even regardless of available clinical and familiar data. The use of the suspected a priori diagnosis referred by the clinicians, especially in the past, could lead to clinical reclassifications to other inherited retinal dystrophies.
Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Distrofias de Cones e Bastonetes/genética , DNA/genética , Mutação , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adulto , Alelos , Distrofias de Cones e Bastonetes/epidemiologia , Análise Mutacional de DNA , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Morbidade/tendências , Linhagem , Fenótipo , Estudos Retrospectivos , Segmento Externo da Célula Bastonete , Espanha/epidemiologiaRESUMO
Clinical exome (CE) sequencing has become a first-tier diagnostic test for hereditary diseases; however, its diagnostic rate is around 30-50%. In this study, we aimed to increase the diagnostic yield of CE using a custom reanalysis algorithm. Sequencing data were available for three cohorts using two commercial protocols applied as part of the diagnostic process. Using these cohorts, we compared the performance of general and clinically relevant variant calling and the efficacy of an in-house bioinformatic protocol (FJD-pipeline) in detecting causal variants as compared to commercial protocols. On the whole, the FJD-pipeline detected 99.74% of the causal variants identified by the commercial protocol in previously solved cases. In the unsolved cases, FJD-pipeline detects more INDELs and non-exonic variants, and is able to increase the diagnostic yield in 2.5% and 3.2% in the re-analysis of 78 cancer and 62 cardiovascular cases. These results were considered to design a reanalysis, filtering and prioritization algorithm that was tested by reassessing 68 inconclusive cases of monoallelic autosomal recessive retinal dystrophies increasing the diagnosis by 4.4%. In conclusion, a guided NGS reanalysis of unsolved cases increases the diagnostic yield in genetic disorders, making it a useful diagnostic tool in medical genetics.
RESUMO
Rare variants affecting host defense against pathogens could be involved in COVID-19 severity and may help explain fatal outcomes in young and middle-aged patients. Our aim was to report the presence of rare genetic variants in certain genes, by using whole exome sequencing, in a selected group of COVID-19 patients under 65 years who required intubation or resulting in death (n = 44). To this end, different etiopathogenic mechanisms were explored using gene prioritization-based analysis in which genes involved in immune response, immunodeficiencies or blood coagulation were studied. We detected 44 different variants of interest, in 29 different patients (66%). Some of these variants were previously described as pathogenic and were located in genes mainly involved in immune response. A network analysis, including the 42 genes with candidate variants, showed three main components, consisting of 25 highly interconnected genes related to immune response and two additional networks composed by genes enriched in carbohydrate metabolism and in DNA metabolism and repair processes. In conclusion, we have detected candidate variants that may potentially influence COVID-19 outcome in our cohort of patients. Further studies are needed to confirm the ultimate role of the genetic variants described in the present study on COVID-19 severity.
Assuntos
COVID-19 , Síndromes de Imunodeficiência , Idoso , COVID-19/genética , Estudos de Coortes , Predisposição Genética para Doença , Humanos , Pessoa de Meia-Idade , Sequenciamento do ExomaRESUMO
Inherited retinal dystrophies (IRD) are a highly heterogeneous group of rare diseases with a molecular diagnostic rate of >50%. Reclassification of variants of uncertain significance (VUS) poses a challenge for IRD diagnosis. We collected 668 IRD cases analyzed by our geneticists using two different clinical exome-sequencing tests. We identified 114 unsolved cases pending reclassification of 125 VUS and studied their genomic, functional, and laboratory-specific features, comparing them to pathogenic and likely pathogenic variants from the same cohort (N = 390). While the clinical exome used did not show differences in diagnostic rate, the more IRD-experienced geneticist reported more VUS (p = 4.07e-04). Significantly fewer VUS were reported in recessive cases (p = 2.14e-04) compared to other inheritance patterns, and of all the genes analyzed, ABCA4 and IMPG2 had the lowest and highest VUS frequencies, respectively (p = 3.89e-04, p = 6.93e-03). Moreover, few frameshift and stop-gain variants were found to be informed VUS (p = 6.73e-08 and p = 2.93e-06). Last, we applied five pathogenicity predictors and found there is a significant proof of deleteriousness when all score for pathogenicity in missense variants. Altogether, these results provided input for a set of rules that correctly reclassified ~70% of VUS as pathogenic in validation datasets. Disease- and setting-specific features influence VUS reporting. Comparison with pathogenic and likely pathogenic variants can prioritize VUS more likely to be reclassified as causal.
RESUMO
Inherited retinal diseases (IRDs), defined by dysfunction or progressive loss of photoreceptors, are disorders characterized by elevated heterogeneity, both at the clinical and genetic levels. Our main goal was to address the genetic landscape of IRD in the largest cohort of Spanish patients reported to date. A retrospective hospital-based cross-sectional study was carried out on 6089 IRD affected individuals (from 4403 unrelated families), referred for genetic testing from all the Spanish autonomous communities. Clinical, demographic and familiar data were collected from each patient, including family pedigree, age of appearance of visual symptoms, presence of any systemic findings and geographical origin. Genetic studies were performed to the 3951 families with available DNA using different molecular techniques. Overall, 53.2% (2100/3951) of the studied families were genetically characterized, and 1549 different likely causative variants in 142 genes were identified. The most common phenotype encountered is retinitis pigmentosa (RP) (55.6% of families, 2447/4403). The most recurrently mutated genes were PRPH2, ABCA4 and RS1 in autosomal dominant (AD), autosomal recessive (AR) and X-linked (XL) NON-RP cases, respectively; RHO, USH2A and RPGR in AD, AR and XL for non-syndromic RP; and USH2A and MYO7A in syndromic IRD. Pathogenic variants c.3386G > T (p.Arg1129Leu) in ABCA4 and c.2276G > T (p.Cys759Phe) in USH2A were the most frequent variants identified. Our study provides the general landscape for IRD in Spain, reporting the largest cohort ever presented. Our results have important implications for genetic diagnosis, counselling and new therapeutic strategies to both the Spanish population and other related populations.
Assuntos
Distrofias Retinianas/epidemiologia , Distrofias Retinianas/genética , Transportadores de Cassetes de Ligação de ATP/genética , Adulto , Idoso , Estudos de Coortes , Estudos Transversais , DNA/genética , Proteínas da Matriz Extracelular/genética , Proteínas do Olho/genética , Feminino , Testes Genéticos/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Miosina VIIa/genética , Linhagem , Periferinas/genética , Prevalência , Retinose Pigmentar/genética , Estudos Retrospectivos , Espanha/epidemiologiaRESUMO
Importance: The mechanisms behind the phenotypic variability and reduced penetrance in autosomal recessive Stargardt disease (STGD1), often a blinding disease, are poorly understood. Identification of the unknown disease modifiers can improve patient and family counseling and provide valuable information for disease management. Objective: To assess the association of incompletely penetrant ABCA4 alleles with sex in STGD1. Design, Setting, and Participants: Genetic data for this cross-sectional study were obtained from 2 multicenter genetic studies of 1162 patients with clinically suspected STGD1. Unrelated patients with genetically confirmed STGD1 were selected. The data were collected from June 2016 to June 2019, and post hoc analysis was performed between July 2019 and January 2020. Main Outcomes and Measures: Penetrance of reported mild ABCA4 variants was calculated by comparing the allele frequencies in the general population (obtained from the Genome Aggregation Database) with the genotyping data in the patient population (obtained from the ABCA4 Leiden Open Variation Database). The sex ratio among patients with and patients without an ABCA4 allele with incomplete penetrance was assessed. Results: A total of 550 patients were included in the study, among which the mean (SD) age was 45.7 (18.0) years and most patients were women (311 [57%]). Five of the 5 mild ABCA4 alleles, including c.5603A>T and c.5882G>A, were calculated to have incomplete penetrance. The women to men ratio in the subgroup carrying c.5603A>T was 1.7 to 1; the proportion of women in this group was higher compared with the subgroup not carrying a mild allele (difference, 13%; 95% CI, 3%-23%; P = .02). The women to men ratio in the c.5882G>A subgroup was 2.1 to 1, and the women were overrepresented compared with the group carrying no mild allele (difference, 18%; 95% CI, 6%-30%; P = .005). Conclusions and Relevance: This study found an imbalance in observed sex ratio among patients harboring a mild ABCA4 allele, which concerns approximately 25% of all patients with STGD1, suggesting that STGD1 should be considered a polygenic or multifactorial disease rather than a disease caused by ABCA4 gene mutations alone. The findings suggest that sex should be considered as a potential disease-modifying variable in both basic research and clinical trials on STGD1.
Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , DNA/genética , Mutação , Doença de Stargardt/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Alelos , Estudos Transversais , Análise Mutacional de DNA , Feminino , Frequência do Gene , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Distribuição por Sexo , Fatores Sexuais , Doença de Stargardt/diagnósticoRESUMO
PURPOSE: To define genotype-phenotype correlations in the largest cohort study worldwide of patients with biallelic ABCA4 variants, including 434 patients with Stargardt disease (STGD1) and 72 with cone-rod dystrophy (CRD). DESIGN: Cohort study. METHODS: We characterized 506 patients with ABCA4 variants using conventional genetic tools and next-generation sequencing technologies. Medical history and ophthalmologic data were obtained from 372 patients. Genotype-phenotype correlation studies were carried out for the following variables: variant type, age at symptom onset (AO), and clinical phenotype. RESULTS: A total of 228 different pathogenic variants were identified in 506 ABCA4 patients, 50 of which were novel. Genotype-phenotype correlations showed that most of the patients with biallelic truncating variants presented with CRD and that these cases had a significantly earlier AO than patients with STGD1. Three missense variants are associated with CRD for the first time (c.1804C>T; p.[Arg602Trp], c.3056C>T; p.[Thr1019Met], and c.6320G>C; p.[Arg2107Pro]). Analysis of the most prevalent ABCA4 variant in Spain, c.3386G>T; p.(Arg1129Leu), revealed that is correlated to STGD1, later AO, and foveal sparing. CONCLUSIONS: Our study, conducted in the largest ABCA4-associated disease cohort reported to date, updates the genotype-phenotype model established for ABCA4 variants and broadens the mutational spectrum of the gene. According to our observations, patients with ABCA4 presenting with 2 truncating variants may first present features of STGD1 but eventually develop rod dysfunction, and specific missense variants may be associated with a different phenotype, underscoring the importance of an accurate genetic diagnosis. Also, it is a prerequisite for enrollment in clinical trials, and to date, no other treatment has been approved for STGD1.