Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 608(7924): 712-718, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36002487

RESUMO

Liquids with permanent microporosity can absorb larger quantities of gas molecules than conventional solvents1, providing new opportunities for liquid-phase gas storage, transport and reactivity. Current approaches to designing porous liquids rely on sterically bulky solvent molecules or surface ligands and, thus, are not amenable to many important solvents, including water2-4. Here we report a generalizable thermodynamic strategy to preserve permanent microporosity and impart high gas solubilities to liquid water. Specifically, we show how the external and internal surface chemistry of microporous zeolite and metal-organic framework (MOF) nanocrystals can be tailored to promote the formation of stable dispersions in water while maintaining dry networks of micropores that are accessible to gas molecules. As a result of their permanent microporosity, these aqueous fluids can concentrate gases, including oxygen (O2) and carbon dioxide (CO2), to much higher densities than are found in typical aqueous environments. When these fluids are oxygenated, record-high capacities of O2 can be delivered to hypoxic red blood cells, highlighting one potential application of this new class of microporous liquids for physiological gas transport.

2.
Nature ; 592(7855): 558-563, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33883730

RESUMO

Successfully interfacing enzymes and biomachinery with polymers affords on-demand modification and/or programmable degradation during the manufacture, utilization and disposal of plastics, but requires controlled biocatalysis in solid matrices with macromolecular substrates1-7. Embedding enzyme microparticles speeds up polyester degradation, but compromises host properties and unintentionally accelerates the formation of microplastics with partial polymer degradation6,8,9. Here we show that by nanoscopically dispersing enzymes with deep active sites, semi-crystalline polyesters can be degraded primarily via chain-end-mediated processive depolymerization with programmable latency and material integrity, akin to polyadenylation-induced messenger RNA decay10. It is also feasible to achieve processivity with enzymes that have surface-exposed active sites by engineering enzyme-protectant-polymer complexes. Poly(caprolactone) and poly(lactic acid) containing less than 2 weight per cent enzymes are depolymerized in days, with up to 98 per cent polymer-to-small-molecule conversion in standard soil composts and household tap water, completely eliminating current needs to separate and landfill their products in compost facilities. Furthermore, oxidases embedded in polyolefins retain their activities. However, hydrocarbon polymers do not closely associate with enzymes, as their polyester counterparts do, and the reactive radicals that are generated cannot chemically modify the macromolecular host. This study provides molecular guidance towards enzyme-polymer pairing and the selection of enzyme protectants to modulate substrate selectivity and optimize biocatalytic pathways. The results also highlight the need for in-depth research in solid-state enzymology, especially in multi-step enzymatic cascades, to tackle chemically dormant substrates without creating secondary environmental contamination and/or biosafety concerns.


Assuntos
Lipase/metabolismo , Nanotecnologia , Poliésteres/química , Poliésteres/metabolismo , Polimerização , Biocatálise , Domínio Catalítico , Estabilidade Enzimática , Cinética , Oxirredutases/metabolismo , Polienos/química , Polienos/metabolismo , Especificidade por Substrato
3.
Small ; : e2400775, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829024

RESUMO

Graphene, a 2D carbon material, possesses extraordinary mechanical, electrical, and thermal properties, making it highly attractive for various biological applications such as biosensing, biotherapeutics, and tissue engineering. However, the tendency of graphene sheets to aggregate and restack hinders its dispersion in water, limiting these applications. Peptides, with their defined amino acid sequences and versatile functionalities, are compelling molecules with which to modify graphene-aromatic amino acids can strengthen interactions through π-stacking and charged groups can be chosen to make the sheets dispersible and stable in water. Here, a facile and green method for covalently functionalizing and dispersing graphene using amphiphilic tripeptides, facilitated by a tyrosine phenol side chain, through an aqueous enzymatic oxidation process is demonstrated. The presence of a second aromatic side chain group enhances this interaction through non-covalent support via π-π stacking with the graphene surface. Futhermore, the addition of charged moieties originating from either ionizable amino acids or terminal groups facilitates profound interactions with water, resulting in the dispersion of the newly functionalized graphene in aqueous solutions. This biofunctionalization method resulted in ≈56% peptide loading on the graphene surface, leading to graphene dispersions that remain stable for months in aqueous solutions outperforming currently used surfactants.

4.
J Am Chem Soc ; 145(36): 19982-19988, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37655897

RESUMO

Aqueous dispersions of microporous nanocrystals with dry, gas-accessible pores─referred to as "microporous water"─enable high densities of gas molecules to be transported through water. For many applications of microporous water, generalizable strategies are required to functionalize the external surface of microporous particles to control their dispersibility, stability, and interactions with other solution-phase components─including catalysts, proteins, and cells─while retaining as much of their internal pore volume as possible. Here, we establish design principles for the noncovalent surface functionalization of hydrophobic metal-organic frameworks with amphiphilic polymers that render the particles dispersible in water and enhance their hydrolytic stability. Specifically, we show that block co-polymers with persistence lengths that exceed the micropore aperture size of zeolitic imidazolate frameworks (ZIFs) can dramatically enhance ZIF particle dispersibility and stability while preserving porosity and >80% of the theoretical O2 carrying capacity. Moreover, enhancements in hydrolytic stability are greatest when the polymer can form strong bonds to exposed metal sites on the external particle surface. More broadly, our insights provide guidelines for controlling the interface between polymers and metal-organic framework particles in aqueous environments to augment the properties of microporous water.

5.
Adv Mater ; 34(30): e2202177, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35580071

RESUMO

Electronic waste carries energetic costs and an environmental burden rivaling that of plastic waste due to the rarity and toxicity of the heavy-metal components. Recyclable conductive composites are introduced for printed circuits formulated with polycaprolactone (PCL), conductive fillers, and enzyme/protectant nanoclusters. Circuits can be printed with flexibility (breaking strain ≈80%) and conductivity (≈2.1 × 104 S m-1 ). These composites are degraded at the end of life by immersion in warm water with programmable latency. Approximately 94% of the functional fillers can be recycled and reused with similar device performance. The printed circuits remain functional and degradable after shelf storage for at least 7 months at room temperature and one month of continuous operation under electrical voltage. The present studies provide composite design toward recyclable and easily disposable printed electronics for applications such as wearable electronics, biosensors, and soft robotics.


Assuntos
Técnicas Biossensoriais , Tinta , Animais , Condutividade Elétrica , Eletrônica , Estágios do Ciclo de Vida
6.
Adv Mater ; 33(49): e2105707, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34623716

RESUMO

Embedding catalysts inside of plastics affords accelerated chemical modification with programmable latency and pathways. Nanoscopically embedded enzymes can lead to near-complete degradation of polyesters via chain-end mediated processive depolymerization. The overall degradation rate and pathways have a strong dependence on the morphology of semicrystalline polyesters. Yet, most studies to date focus on pristine polymers instead of mixtures that contain additives and other components despite their nearly universal use in plastic production. Here, additives are introduced to purposely change the morphology of polycaprolactone (PCL) by increasing the bending and twisting of crystalline lamellae. These morphological changes immobilize chain ends preferentially at the crystalline/amorphous interfaces and limit chain-end accessibility by the embedded processive enzyme. This chain-end redistribution reduces the polymer-to-monomer conversion from >95% to less than 50%, causing formation of highly crystalline plastic pieces, including microplastics. By synergizing both random chain scission and processive depolymerization, it is feasible to navigate morphological changes in polymer/additive blends and to achieve near-complete depolymerization. The random scission enzymes in the amorphous domains create new chain ends that are subsequently bound and depolymerized by processive enzymes. Present studies further highlight the importance to consider how the host polymer's morphologies affect the reactions catalyzed by embedded catalytic species.


Assuntos
Plásticos , Poliésteres , Poliésteres/química , Polímeros/química
7.
ACS Appl Mater Interfaces ; 10(51): 44216-44220, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30508482

RESUMO

Highly effective and reusable organophosphorus hydrolase (OPH)-loaded fiber mats have been fabricated that are capable of degrading toxic organophosphates (OPs) over a broad range of relevant concentrations (from 8 to 8250 ppm). The inherent fragility of enzymes, a major impediment in their incorporation into technologically relevant materials, was overcome while retaining their high catalytic efficiency, selectivity, and sensitivity via a random heteropolymers (RHP) approach. Kinetic analysis guides the design of polycaprolactone matrix morphology from films to fibers, facilitating substrate diffusion in the material. The RHP-OPH fiber mats demonstrate excellent stability and reusability with minimal requirements for storage, retaining over 40% of their initial activity after repeated daily use for three months. Practically, present studies provide valuable guidance toward fabrication of enzyme-based functional materials.


Assuntos
Arildialquilfosfatase/química , Inseticidas/química , Membranas Artificiais , Compostos Organofosforados/química , Purificação da Água/métodos , Água/química , Catálise , Poliésteres/química
8.
Science ; 359(6381): 1239-1243, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29590071

RESUMO

The successful incorporation of active proteins into synthetic polymers could lead to a new class of materials with functions found only in living systems. However, proteins rarely function under the conditions suitable for polymer processing. On the basis of an analysis of trends in protein sequences and characteristic chemical patterns on protein surfaces, we designed four-monomer random heteropolymers to mimic intrinsically disordered proteins for protein solubilization and stabilization in non-native environments. The heteropolymers, with optimized composition and statistical monomer distribution, enable cell-free synthesis of membrane proteins with proper protein folding for transport and enzyme-containing plastics for toxin bioremediation. Controlling the statistical monomer distribution in a heteropolymer, rather than the specific monomer sequence, affords a new strategy to interface with biological systems for protein-based biomaterials.


Assuntos
Materiais Biomiméticos/química , Polímeros/química , Dobramento de Proteína , Proteínas/química , Sequência de Aminoácidos , Simulação de Dinâmica Molecular , Solubilidade
9.
ACS Appl Mater Interfaces ; 8(33): 21261-9, 2016 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-27467445

RESUMO

Freestanding, binder-free supercapacitor electrodes based on high-purity polyaniline (PANI) nanofibers were fabricated via a single step electrospinning process. The successful electrospinning of nanofibers with an unprecedentedly high composition of PANI (93 wt %) was made possible due to blending ultrahigh molecular weight poly(ethylene oxide) (PEO) with PANI in solution to impart adequate chain entanglements, a critical requirement for electrospinning. To further enhance the conductivity and stability of the electrodes, a small concentration of carbon nanotubes (CNTs) was added to the PANI/PEO solution prior to electrospinning to generate PANI/CNT/PEO nanofibers (12 wt % CNTs). Scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) porosimetry were conducted to characterize the external morphology of the nanofibers. The electrospun nanofibers were further probed by transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). The electroactivity of the freestanding PANI and PANI/CNT nanofiber electrodes was examined using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. Competitive specific capacitances of 308 and 385 F g(-1) were achieved for PANI and PANI-CNT based electrodes, respectively, at a current density of 0.5 A g(-1). Moreover, specific capacitance retentions of 70 and 81.4% were observed for PANI and PANI-CNT based electrodes, respectively, after 1000 cycles. The promising electrochemical performance of the fabricated electrodes, we believe, stems from the porous 3-D electrode structure characteristic of the nonwoven interconnected nanostructures. The interconnected nanofiber network facilitates efficient electron conduction while the inter- and intrafiber porosity enable excellent electrolyte penetration within the polymer matrix, allowing fast ion transport to the active sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA