Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biol Inorg Chem ; 28(8): 777-790, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37978078

RESUMO

Positron emission tomography (PET) imaging of Aß plaques, is recognized as a tool for the diagnosis of Alzheimer's disease. As a contribution to the development of new strategies for early diagnosis of the disease, using PET medical imaging technique, a new copper complex, the [Cu(TE1PA-ONO)]+ was synthesized in ten steps. The key step of our strategy is the coupling of a monopicolinate-N-alkylated cyclam-based ligand with a moiety capable of recognizing Aß plaques via a successful and challenging Buchwald-Hartwig coupling reaction. To our knowledge, it is the first time that such a strategy is used to functionalize polyazamacrocyclic derivatives. The thermodynamic stability constants determined in MeOH/H2O solvent indicate that the attachment of this moiety does not weaken the chelating properties of TE1PA-ONO ligand in relation to parent HTE1PA. The novel complex described here is able to recognize amyloid plaques in brain sections from Alzheimer's disease patients and shows low toxicity to human neuronal cells.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Cobre , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/metabolismo , Quelantes , Peptídeos beta-Amiloides/metabolismo
2.
Chem Sci ; 15(30): 11794-11806, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39092112

RESUMO

The iridium-catalyzed C-H borylation of benzamides typically leads to meta and para selectivities using state-of-the-art iridium-based N,N-chelating bipyridine ligands. However, reaching ortho selectivity patterns requires extensive trial-and-error screening via molecular design at the ligand first coordination sphere. Herein, we demonstrate that triazolylpyridines are excellent ligands for the selective iridium-catalyzed ortho C-H borylation of tertiary benzamides and, importantly, we demonstrate the almost negligible effect of the first coordination sphere in the selectivity, which is so far unprecedented in iridium C-H bond borylations. Remarkably, the activity is dramatically enhanced by exploiting a remote Zn⋯O[double bond, length as m-dash]C weak interaction between the substrate and a rationally designed molecular-recognition site in the catalyst. Kinetic studies and DFT calculations indicate that the iridium-catalyzed C-H activation step is not rate-determining, this being unique for remotely controlled C-H functionalizations. Consequently, a previously established supramolecular iridium catalyst designed for meta-borylation of pyridines is now compatible with the ortho-borylation of benzamides, a regioselectivity switch that is counter-intuitive regarding precedents in the literature. In addition, we highlight the role of the cyclohexene additive in avoiding the formation of undesired side-products as well as accelerating the HBpin release event that precedes the catalyst regeneration step, which is highly relevant for the design of powerful and selective iridium borylating catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA