Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 409: 115307, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33147493

RESUMO

Inorganic arsenic (iAs) is one of the most endemic toxicants worldwide and oxidative stress is a key cellular pathway underlying iAs toxicity. Other cellular stress response pathways, such as the unfolded protein response (UPR), are also impacted by iAs exposure, however it is not known how these pathways intersect to cause disease. We optimized the use of zebrafish larvae to identify the relationship between these cellular stress response pathways and arsenic toxicity. We found that the window of iAs susceptibility during zebrafish development corresponds with the development of the liver, and that even a 24-h exposure can cause lethality if administered to mature larvae, but not to early embryos. Acute exposure of larvae to iAs generates reactive oxygen species (ROS), an antioxidant response, endoplasmic reticulum (ER) stress and UPR activation in the liver. An in vivo assay using transgenic larvae expressing a GFP-tagged secreted glycoprotein in hepatocytes (Tg(fabp10a:Gc-EGFP)) revealed acute iAs exposure selectively decreased expression of Gc-EGFP, indicating that iAs impairs secretory protein folding in the liver. The transcriptional output of UPR activation is preceded by ROS production and activation of genes involved in the oxidative stress response. These studies implicate redox imbalance as the mechanism of iAs-induced ER stress and suggest that crosstalk between these pathways underlie iAs-induced hepatic toxicity.


Assuntos
Arsênio/toxicidade , Fígado/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Antioxidantes/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra
2.
Biol Open ; 13(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38446164

RESUMO

The impacts of exposure to the pervasive environmental toxicant, inorganic arsenic (iAs), on human and fish health are well characterized and several lines of evidence suggest that some impacts can manifest years after exposure cessation. Using a developmental exposure protocol whereby zebrafish embryos were exposed to 0.5 and 1.5 mM iAs from 4-120 hours post fertilization (hpf) and then removed, we investigated the sustained effects of iAs on gene expression in the liver, survival, reproductive success, and susceptibility to iAs toxicity in the subsequent generation. Persistent exposure to iAs during development had substantial effects on the hepatic transcriptome, with 23% of all expressed genes significantly changed following developmental exposure. The gsto2 gene is involved in iAs metabolism and this gene was significantly downregulated in female livers 9 months after iAs was removed. Developmental exposure to 1.5 mM iAs, but not 0.5 mM, decreased survival by over 50% at 3 months of age. Adults that were developmentally exposed to 0.5 mM iAs had reduced mating success, but their offspring had no differences in observable aspects of development or their susceptibility to iAs toxicity. This demonstrates that developmental exposure of zebrafish to iAs reduces long-term survival, reproductive success and causes sustained changes to gsto2 expression in the liver.


Assuntos
Arsênio , Peixe-Zebra , Adulto , Animais , Humanos , Feminino , Peixe-Zebra/genética , Arsênio/toxicidade , Fígado , Reprodução , Comunicação Celular
3.
Sci Adv ; 8(2): eabl7287, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35020424

RESUMO

Coral populations in the world's warmest reefs, the Persian/Arabian Gulf (PAG), represent an ideal model system to understand the evolutionary response of coral populations to past and present environmental change and to identify genomic loci that contribute to elevated thermal tolerance. Here, we use population genomics of the brain coral Platygyra daedalea to show that corals in the PAG represent a distinct subpopulation that was established during the Holocene marine transgression, and identify selective sweeps in their genomes associated with thermal adaptation. We demonstrate the presence of positive and disruptive selection and provide evidence for selection of differentially methylated haplotypes. While demographic analyses suggest limited potential for genetic rescue of neighboring Indian Ocean reefs, the presence of putative targets of selection in corals outside of the PAG offers hope that loci associated with thermal tolerance may be present in the standing genetic variation.

4.
Curr Protoc ; 1(9): e231, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34491623

RESUMO

The use of whole animal models in toxicological studies is essential for understanding the physiological responses caused by chemical exposures. However, such studies can face reproducibility challenges due to unaccounted experimental parameters that can have a marked influence on toxicological outcomes. Zebrafish embryos and larvae are a popular vertebrate animal model for studying cellular, tissue, and organ responses to toxicant exposures. Despite the popularity of this system, standardized protocols that control for the influence of various experimental parameters and culture conditions on the toxicological response in these animals have not been widely adopted, making it difficult to compare findings from different laboratories. Here, we describe a detailed approach for designing and optimizing protocols to assess the impact of chemical exposures on the development and survival of zebrafish embryos and larvae. We first describe our standard procedure to determine two key toxicological thresholds, the maximum tolerable concentration (MTC) and the lethal concentration (LC50 , defined as that in which 50% of larvae die), in response to an exposure that persists from early development through larval maturation. We then describe two protocols to systematically test how key experimental parameters, including genetic background, culture media, animal density, volume, plate material, and developmental stage in which the embryos are exposed, alter the MTC and LC50 . Finally, we provide a step-by-step guide to assess the interaction between two chemicals using this model. These protocols will guide the standardization of toxicological studies using zebrafish and maximize reproducibility. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Zebrafish embryo collection and culture, and establishment of the MTC and LC50 Basic Protocol 2: Evaluation of the impact of culture conditions on toxicant responses of zebrafish embryo and larvae Basic Protocol 3: Identification of the developmental window of sensitivity to toxicant exposure Basic Protocol 4: Testing interaction between multiple toxicants.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Larva , Dose Letal Mediana , Reprodutibilidade dos Testes
5.
PLoS One ; 12(6): e0180169, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28666005

RESUMO

Corals in the Arabian/Persian Gulf (PAG) survive extreme sea temperatures (summer mean: >34°C), and it is unclear whether these corals have genetically adapted or physiologically acclimated to these conditions. In order to elucidate the processes involved in the thermal tolerance of PAG corals, it is essential to understand the connectivity between reefs within and outside of the PAG. To this end, this study set out to investigate the genetic structure of the coral, Platygyra daedalea, and its symbiotic algae in the PAG and neighbouring Gulf of Oman. Using nuclear markers (the ITS region and an intron of the Pax-C gene), this study demonstrates genetic divergence of P. daedalea on reefs within the thermally extreme PAG compared with those in the neighbouring Gulf of Oman. Isolation by distance of P. daedalea was supported by the ITS dataset but not the Pax-C intron. In addition, the symbiont community within the PAG was dominated by C3 symbionts, while the purportedly thermotolerant clade D was extremely rare and was common only at sites outside of the PAG. Analysis of the psbAncr indicates that the C3 variant hosted by P. daedalea in the PAG belongs to the newly described species, Symbiodinium thermophilum. The structuring of the coral and symbiont populations suggests that both partners of the symbiosis may contribute to the high bleaching thresholds of PAG corals. While limited gene flow has likely played a role in local adaptation within the PAG, it also indicates limited potential for natural export of thermal tolerance traits to reefs elsewhere in the Indian Ocean threatened by climate change.


Assuntos
Antozoários/parasitologia , Recifes de Corais , Dinoflagellida/fisiologia , Simbiose , Animais , Dinoflagellida/genética , Oceano Índico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA