RESUMO
Microorganisms, including bacteria, archaea, viruses, fungi, and protists, are essential to life on Earth and the functioning of the biosphere. Here, we discuss the key roles of microorganisms in achieving the United Nations Sustainable Development Goals (SDGs), highlighting recent and emerging advances in microbial research and technology that can facilitate our transition toward a sustainable future. Given the central role of microorganisms in the biochemical processing of elements, synthesizing new materials, supporting human health, and facilitating life in managed and natural landscapes, microbial research and technologies are directly or indirectly relevant for achieving each of the SDGs. More importantly, the ubiquitous and global role of microbes means that they present new opportunities for synergistically accelerating progress toward multiple sustainability goals. By effectively managing microbial health, we can achieve solutions that address multiple sustainability targets ranging from climate and human health to food and energy production. Emerging international policy frameworks should reflect the vital importance of microorganisms in achieving a sustainable future.
Assuntos
Desenvolvimento Sustentável , Humanos , Nações Unidas , Objetivos , Bactérias/metabolismo , Saúde Global , Fungos/metabolismoRESUMO
The latitudinal diversity gradient (LDG) dominates global patterns of diversity1,2, but the factors that underlie the LDG remain elusive. Here we use a unique global dataset3 to show that vascular plants on oceanic islands exhibit a weakened LDG and explore potential mechanisms for this effect. Our results show that traditional physical drivers of island biogeography4-namely area and isolation-contribute to the difference between island and mainland diversity at a given latitude (that is, the island species deficit), as smaller and more distant islands experience reduced colonization. However, plant species with mutualists are underrepresented on islands, and we find that this plant mutualism filter explains more variation in the island species deficit than abiotic factors. In particular, plant species that require animal pollinators or microbial mutualists such as arbuscular mycorrhizal fungi contribute disproportionately to the island species deficit near the Equator, with contributions decreasing with distance from the Equator. Plant mutualist filters on species richness are particularly strong at low absolute latitudes where mainland richness is highest, weakening the LDG of oceanic islands. These results provide empirical evidence that mutualisms, habitat heterogeneity and dispersal are key to the maintenance of high tropical plant diversity and mediate the biogeographic patterns of plant diversity on Earth.
Assuntos
Biodiversidade , Mapeamento Geográfico , Ilhas , Plantas , Simbiose , Animais , Conjuntos de Dados como Assunto , Micorrizas/fisiologia , Plantas/microbiologia , Polinização , Clima Tropical , Oceanos e Mares , FilogeografiaRESUMO
Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.
Assuntos
Biodiversidade , Meio Ambiente , Espécies Introduzidas , Árvores , Bases de Dados Factuais , Atividades Humanas , Espécies Introduzidas/estatística & dados numéricos , Espécies Introduzidas/tendências , Filogenia , Chuva , Temperatura , Árvores/classificação , Árvores/fisiologiaRESUMO
Conspecific density dependence (CDD) in plant populations is widespread, most likely caused by local-scale biotic interactions, and has potentially important implications for biodiversity, community composition, and ecosystem processes. However, progress in this important area of ecology has been hindered by differing viewpoints on CDD across subfields in ecology, lack of synthesis across CDD-related frameworks, and misunderstandings about how empirical measurements of local CDD fit within the context of broader ecological theories on community assembly and diversity maintenance. Here, we propose a conceptual synthesis of local-scale CDD and its causes, including species-specific antagonistic and mutualistic interactions. First, we compare and clarify different uses of CDD and related concepts across subfields within ecology. We suggest the use of local stabilizing/destabilizing CDD to refer to the scenario where local conspecific density effects are more negative/positive than heterospecific effects. Second, we discuss different mechanisms for local stabilizing and destabilizing CDD, how those mechanisms are interrelated, and how they cut across several fields of study within ecology. Third, we place local stabilizing/destabilizing CDD within the context of broader ecological theories and discuss implications and challenges related to scaling up the effects of local CDD on populations, communities, and metacommunities. The ultimate goal of this synthesis is to provide a conceptual roadmap for researchers studying local CDD and its implications for population and community dynamics.
Assuntos
Biodiversidade , Plantas , Densidade Demográfica , Dinâmica Populacional , Fenômenos Fisiológicos Vegetais , Simbiose , EcossistemaRESUMO
Recent work established a backbone reference tree and phylogenetic placement pipeline for identification of arbuscular mycorrhizal fungal (AMF) large subunit (LSU) rDNA environmental sequences. Our previously published pipeline allowed any environmental sequence to be identified as putative AMF or within one of the major families. Despite this contribution, difficulties in implementation of the pipeline remain. Here, we present an updated database and pipeline with (1) an expanded backbone tree to include four newly described genera and (2) several changes to improve ease and consistency of implementation. In particular, packages required for the pipeline are now installed as a single folder (conda environment) and the pipeline has been tested across three university computing clusters. This updated backbone tree and pipeline will enable broadened adoption by the community, advancing our understanding of these ubiquitous and ecologically important fungi.
Assuntos
DNA Fúngico , Micorrizas , Filogenia , Micorrizas/genética , Micorrizas/classificação , DNA Fúngico/genética , DNA Ambiental/genética , DNA Ambiental/análise , Microbiologia do Solo , DNA Ribossômico/genéticaRESUMO
Microbes are thought to maintain diversity in plant communities by specializing on particular species, but it is not known whether microbes that specialize within species (i.e., on genotypes) affect diversity or dynamics in plant communities. Here we show that soil microbes can specialize at the within-population level in a wild plant species, and that such specialization could promote species diversity and seed dispersal in plant communities. In a shadehouse experiment in Panama, we found that seedlings of the native tree species, Virola surinamensis (Myristicaceae), had reduced performance in the soil microbial community of their maternal tree compared with in the soil microbial community of a nonmaternal tree from the same population. Performance differences were unrelated to soil nutrients or to colonization by mycorrhizal fungi, suggesting that highly specialized pathogens were the mechanism reducing seedling performance in maternal soils. We then constructed a simulation model to explore the ecological and evolutionary consequences of genotype-specific pathogens in multispecies plant communities. Model results indicated that genotype-specific pathogens promote plant species coexistence-albeit less strongly than species-specific pathogens-and are most effective at maintaining species richness when genetic diversity is relatively low. Simulations also revealed that genotype-specific pathogens select for increased seed dispersal relative to species-specific pathogens, potentially helping to create seed dispersal landscapes that allow pathogens to more effectively promote diversity. Combined, our results reveal that soil microbes can specialize within wild plant populations, affecting seedling performance near conspecific adults and influencing plant community dynamics on ecological and evolutionary time scales.
Assuntos
Consórcios Microbianos/fisiologia , Modelos Biológicos , Micorrizas/fisiologia , Myristicaceae , Plântula , Microbiologia do Solo , Myristicaceae/genética , Myristicaceae/crescimento & desenvolvimento , Myristicaceae/microbiologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/microbiologiaRESUMO
Arbuscular mycorrhizal fungi (AMF; Glomeromycota) are difficult to culture; therefore, establishing a robust amplicon-based approach to taxa identification is imperative to describe AMF diversity. Further, due to low and biased sampling of AMF taxa, molecular databases do not represent the breadth of AMF diversity, making database matching approaches suboptimal. Therefore, a full description of AMF diversity requires a tool to determine sequence-based placement in the Glomeromycota clade. Nonetheless, commonly used gene regions, including the SSU and ITS, do not enable reliable phylogenetic placement. Here, we present an improved database and pipeline for the phylogenetic determination of AMF using amplicons from the large subunit (LSU) rRNA gene. We improve our database and backbone tree by including additional outgroup sequences. We also improve an existing bioinformatics pipeline by aligning forward and reverse reads separately, using a universal alignment for all tree building, and implementing a BLAST screening prior to tree building to remove non-homologous sequences. Finally, we present a script to extract AMF belonging to 11 major families as well as an amplicon sequencing variant (ASV) version of our pipeline. We test the utility of the pipeline by testing the placement of known AMF, known non-AMF, and Acaulospora sp. spore sequences. This work represents the most comprehensive database and pipeline for phylogenetic placement of AMF LSU amplicon sequences within the Glomeromycota clade.
Assuntos
Glomeromycota , Micorrizas , DNA Ribossômico/genética , Glomeromycota/genética , Micorrizas/genética , FilogeniaRESUMO
Arbuscular mycorrhizal fungi (AMF) can increase plant fitness under certain environmental conditions. Among the mechanisms that may drive this mutualism, the most studied is provisioning of nutrients by AMF in exchange for carbon from plant hosts. However, AMF may also provide a suite of non-nutritional benefits to plants including improved water uptake, disease resistance, plant chemical defense, soil aggregation, and allelochemical transport and protection. Here, we use a meta-analysis of 93 studies to assess the relative effect of AMF on nutritional and non-nutritional factors that may influence plant fitness. We find that the positive effects of AMF on soil aggregation, water flow and disease resistance are equal to the effect of AMF on plant nitrogen and phosphorus uptake. However, AMF had no effect on the uptake of other nutrients, plant water content, allelopathic transport or production of chemical defense compounds. We suggest future research directions, including experimentally assessing the relative contribution on plant fitness of AMF interactions by untangling the independence of alternative benefits of AMF from an increase in nutrient uptake. This will lead to a more holistic view of the mycorrhizal-plant association and a more accurate picture of the net impact on the plant or plant community in question.
Assuntos
Micorrizas/fisiologia , Plantas/microbiologia , Microbiologia do Solo , Nitrogênio/metabolismo , Fósforo/metabolismo , Raízes de Plantas , Solo , SimbioseRESUMO
Nitrogen (N) and phosphorus (P) deposition are increasing worldwide largely due to increased fertilizer use and fossil fuel combustion. Most work with N and P deposition in natural ecosystems has focused on temperate, highly industrialized, regions. Tropical regions are becoming more developed, releasing large amounts of these nutrients into the atmosphere. Nutrient enrichment in nutrient-poor systems such as tropical montane forest can represent a relatively large shift in nutrient availability, especially for sensitive microorganisms such as arbuscular mycorrhizal fungi (AMF). These symbiotic fungi are particularly critical, given their key role in ecosystem processes affecting plant community structure and function.To better understand the consequences of nutrient deposition in plant communities, a long-term nutrient addition experiment was set up in a tropical montane forest in the Andes of southern Ecuador. In this study, we investigated the impacts of 7 years of elevated N and P on AMF root colonization potential (AMF-RCP) through a greenhouse bait plant method in which we quantified root colonization. We also examined the relationship between AMF-RCP and rarefied tree diversity.After 7 years of nutrient addition, AMF-RCP was negatively correlated with soil P, positively correlated with soil N, and positively correlated with rarefied tree diversity. Our results show that AMF in this tropical montane forest are directly affected by soil N and P concentrations, but may also be indirectly impacted by shifts in rarefied tree diversity. Our research also highlights the need to fully understand the benefits and drawbacks of using different sampling methods (e.g., AMF-RCP versus direct root sampling) to robustly examine AMF-plant interactions in the future.
Assuntos
Florestas , Micorrizas/fisiologia , Nitrogênio/fisiologia , Fósforo/fisiologia , Equador , Fungos , Raízes de Plantas/microbiologia , Solo/química , Microbiologia do SoloRESUMO
Soil microbes impact plant community structure and diversity through plant-soil feedbacks. However, linking the relative abundance of plant pathogens and mutualists to differential plant recruitment remains challenging. Here, we tested for microbial mediation of pairwise feedback using a reciprocal transplant experiment in a lowland tropical forest in Panama paired with amplicon sequencing of soil and roots. We found evidence that plant species identity alters the microbial community, and these changes in microbial composition alter subsequent growth and survival of conspecific plants. We also found that greater community dissimilarity between species in their arbuscular mycorrhizal and nonpathogenic fungi predicted increased positive feedback. Finally, we identified specific microbial taxa across our target functional groups that differentially accumulated under conspecific settings. Collectively, these findings clarify how soil pathogens and mutualists mediate net feedback effects on plant recruitment, with implications for management and restoration.
Assuntos
Microbiota , Micobioma , Micorrizas , Retroalimentação , Solo , Microbiologia do Solo , Florestas , Plantas , Raízes de PlantasRESUMO
One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species. We further tested for conmycorrhizal density dependence (CMDD) to test for benefit from shared mutualists. We found that the strength of CDD varies systematically with mycorrhizal type, with ectomycorrhizal tree species exhibiting higher sapling densities with increasing adult densities than arbuscular mycorrhizal tree species. Moreover, we found evidence of positive CMDD for tree species of both mycorrhizal types. Collectively, these findings indicate that mycorrhizal interactions likely play a foundational role in global forest diversity patterns and structure.
Assuntos
Micorrizas , Retroalimentação , Simbiose , Plantas/microbiologia , SoloRESUMO
Plant-microbe interactions play an important role in structuring plant communities. Arbuscular mycorrhizal fungi (AMF) are particularly important. Nonetheless, increasing anthropogenic disturbance will lead to novel plant-AMF interactions, altering longstanding co-evolutionary trajectories between plants and their associated AMF. Although emerging work shows that plant-AMF response can evolve over relatively short time scales due to anthropogenic change, little work has evaluated how plant AMF response specificity may evolve due to novel plant-mycorrhizal interactions. Here, we examine changes in plant-AMF interactions in novel grassland systems by comparing the mycorrhizal response of plant populations from unplowed native prairies with populations from post-agricultural grasslands to inoculation with both native prairie AMF and non-native novel AMF. Across four plant species, we find support for evolution of differential responses to mycorrhizal inocula types, that is, mycorrhizal response specificity, consistent with expectations of local adaptation, with plants from native populations responding most to native AMF and plants from post-agricultural populations responding most to non-native AMF. We also find evidence of evolution of mycorrhizal response in two of the four plant species, as overall responsiveness to AMF changed from native to post-agricultural populations. Finally, across all four plant species, roots from native prairie populations had lower levels of mycorrhizal colonization than those of post-agricultural populations. Our results report on one of the first multispecies assessment of local adaptation to AMF. The consistency of the responses in our experiment among four species provides evidence that anthropogenic disturbance may have unintended impacts on native plant species' association with AMF, causing evolutionary change in the benefit native plant species gain from native symbioses.
RESUMO
Island biogeography has classically focused on abiotic drivers of species distributions. However, recent work has highlighted the importance of mutualistic biotic interactions in structuring island floras. The limited occurrence of specialist pollinators and mycorrhizal fungi have been found to restrict plant colonization on oceanic islands. Another important mutualistic association occurs between nearly 15,000 plant species and nitrogen-fixing (N-fixing) bacteria. Here, we look for evidence that N-fixing bacteria limit establishment of plants that associate with them. Globally, we find that plants associating with N-fixing bacteria are disproportionately underrepresented on islands, with a 22% decline. Further, the probability of N-fixing plants occurring on islands decreases with island isolation and, where present, the proportion of N-fixing plant species decreases with distance for large, but not small islands. These findings suggest that N-fixing bacteria serve as a filter to plant establishment on islands, altering global plant biogeography, with implications for ecosystem development and introduction risks.
Assuntos
Micorrizas , Bactérias Fixadoras de Nitrogênio , Ecossistema , Simbiose , Plantas/microbiologia , NitrogênioRESUMO
Soil-borne pathogens structure plant communities, shaping their diversity, and through these effects may mediate plant responses to climate change and disturbance. Little is known, however, about the environmental determinants of plant pathogen communities. Therefore, we explored the impact of climate gradients and anthropogenic disturbance on root-associated pathogens in grasslands. We examined the community structure of two pathogenic groups-fungal pathogens and oomycetes-in undisturbed and anthropogenically disturbed grasslands across a natural precipitation and temperature gradient in the Midwestern USA. In undisturbed grasslands, precipitation and temperature gradients were important predictors of pathogen community richness and composition. Oomycete richness increased with precipitation, while fungal pathogen richness depended on an interaction of precipitation and temperature, with precipitation increasing richness most with higher temperatures. Disturbance altered plant pathogen composition and precipitation and temperature had a reduced effect on pathogen richness and composition in disturbed grasslands. Because pathogens can mediate plant community diversity and structure, the sensitivity of pathogens to disturbance and climate suggests that degradation of the pathogen community may mediate loss, or limit restoration of, native plant diversity in disturbed grasslands, and may modify plant community response to climate change.
Assuntos
Pradaria , Plantas , Biodiversidade , Fungos/genética , Solo , Microbiologia do SoloRESUMO
Plant colonization of islands may be limited by the availability of symbionts, particularly arbuscular mycorrhizal (AM) fungi, which have limited dispersal ability compared to ectomycorrhizal and ericoid (EEM) as well as orchid mycorrhizal (ORC) fungi. We tested for such differential island colonization within contemporary angiosperm floras worldwide. We found evidence that AM plants experience a stronger mycorrhizal filter than other mycorrhizal or non-mycorrhizal (NM) plant species, with decreased proportions of native AM plant species on islands relative to mainlands. This effect intensified with island isolation, particularly for non-endemic plant species. The proportion of endemic AM plant species increased with island isolation, consistent with diversification filling niches left open by the mycorrhizal filter. We further found evidence of humans overcoming the initial mycorrhizal filter. Naturalized floras showed higher proportions of AM plant species than native floras, a pattern that increased with increasing isolation and land-use intensity. This work provides evidence that mycorrhizal fungal symbionts shape plant colonization of islands and subsequent diversification.
Assuntos
Biodiversidade , Micorrizas/fisiologia , Dispersão Vegetal , Fenômenos Fisiológicos Vegetais , Plantas/microbiologia , SimbioseRESUMO
With the advances of sequencing tools, the fields of environmental microbiology and soil ecology have been transformed. Today, the unculturable majority of soil microbes can be sequenced. Although these tools give us tremendous power and open many doors to answer important questions, we must understand how sample processing may impact our results and interpretations. Here, we test the impacts of four soil storage methods on downstream amplicon metabarcoding and qPCR analyses for fungi and bacteria. We further investigate the impact of thaw time on extracted DNA to determine a safe length of time during which this can occur with minimal impact on study results. Overall, we find that storage using standard cold packs with subsequent storage at -20°C is little different than immediate storage in liquid nitrogen, suggesting that the historical and current method is adequate. We further find evidence that storage at room temperature or with aid of RNAlater can lead to changes in community composition and in the case of RNAlater, lower gene copies. We therefore advise against these storage methods for metabarcoding analyses. Finally, we show that over 1 month, DNA extract thaw time does not impact diversity or qPCR metrics. We hope that this work will help researchers working with soil bacteria and fungi make informed decisions about soil storage and transport to ensure repeatability and accuracy of results and interpretations.
RESUMO
Island biogeography has traditionally focused primarily on abiotic drivers of colonization, extinction and speciation. However, establishment on islands could also be limited by biotic drivers, such as the absence of symbionts. Most plants, for example, form symbioses with mycorrhizal fungi, whose limited dispersal to islands could act as a colonization filter for plants. We tested this hypothesis using global-scale analyses of ~1.4 million plant occurrences, including ~200,000 plant species across ~1,100 regions. We find evidence for a mycorrhizal filter (that is, the filtering out of mycorrhizal plants on islands), with mycorrhizal associations less common among native island plants than native mainland plants. Furthermore, the proportion of native mycorrhizal plants in island floras decreased with isolation, possibly as a consequence of a decline in symbiont establishment. We also show that mycorrhizal plants contribute disproportionately to the classic latitudinal gradient of plant species diversity, with the proportion of mycorrhizal plants being highest near the equator and decreasing towards the poles. Anthropogenic pressure and land use alter these plant biogeographical patterns. Naturalized floras show a greater proportion of mycorrhizal plant species on islands than in mainland regions, as expected from the anthropogenic co-introduction of plants with their symbionts to islands and anthropogenic disturbance of symbionts in mainland regions. We identify the mycorrhizal association as an overlooked driver of global plant biogeographical patterns with implications for contemporary island biogeography and our understanding of plant invasions.