Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(40): e2219230120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37751550

RESUMO

Cyanobacteria are infamous producers of toxins. While the toxic potential of planktonic cyanobacterial blooms is well documented, the ecosystem level effects of toxigenic benthic and epiphytic cyanobacteria are an understudied threat. The freshwater epiphytic cyanobacterium Aetokthonos hydrillicola has recently been shown to produce the "eagle killer" neurotoxin aetokthonotoxin (AETX) causing the fatal neurological disease vacuolar myelinopathy. The disease affects a wide array of wildlife in the southeastern United States, most notably waterfowl and birds of prey, including the bald eagle. In an assay for cytotoxicity, we found the crude extract of the cyanobacterium to be much more potent than pure AETX, prompting further investigation. Here, we describe the isolation and structure elucidation of the aetokthonostatins (AESTs), linear peptides belonging to the dolastatin compound family, featuring a unique modification of the C-terminal phenylalanine-derived moiety. Using immunofluorescence microscopy and molecular modeling, we confirmed that AEST potently impacts microtubule dynamics and can bind to tubulin in a similar matter as dolastatin 10. We also show that AEST inhibits reproduction of the nematode Caenorhabditis elegans. Bioinformatic analysis revealed the AEST biosynthetic gene cluster encoding a nonribosomal peptide synthetase/polyketide synthase accompanied by a unique tailoring machinery. The biosynthetic activity of a specific N-terminal methyltransferase was confirmed by in vitro biochemical studies, establishing a mechanistic link between the gene cluster and its product.


Assuntos
Cianobactérias , Águias , Animais , Ecossistema , Cianobactérias/genética , Caenorhabditis elegans , Água Doce
2.
Chembiochem ; 23(1): e202100489, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34821450

RESUMO

Scytophycins, including tolytoxin, represent a class of actin disrupting macrolides with strong antiproliferative effects on human cells. Despite intense research, little attention has been paid to scytophycin-induced cell death or the structural features affecting its potency. We show that tolytoxin and its natural analogue, 7-O-methylscytophycin B, lacking the hydroxyl substitution in its macrolactone ring, differ substantially in their cytotoxic effect. Both compounds increase the level of caspases 3/7, which are the main executioner proteases during apoptosis, in HeLa wild-type (WT) cells. However, no caspase activity was detected in HeLa cells lacking Bax/Bak proteins crucial for caspase activation via the mitochondrial pathway. Obtained data strongly suggests that scytophycins are capable of inducing mitochondria-dependent apoptosis. These findings encourage further research in structure-activity relationships in scytophycins and highlight the potential of these compounds in targeted drug delivery.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Hidróxidos/farmacologia , Macrolídeos/farmacologia , Piranos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Hidróxidos/química , Macrolídeos/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Piranos/química
3.
Molecules ; 25(17)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825321

RESUMO

Heterocytous cyanobacteria are among the most prolific sources of bioactive secondary metabolites, including anabaenopeptins (APTs). A terrestrial filamentous Brasilonema sp. CT11 collected in Costa Rica bamboo forest as a black mat, was studied using a multidisciplinary approach: genome mining and HPLC-HRMS/MS coupled with bioinformatic analyses. Herein, we report the nearly complete genome consisting of 8.79 Mbp with a GC content of 42.4%. Moreover, we report on three novel tryptophan-containing APTs; anabaenopeptin 788 (1), anabaenopeptin 802 (2), and anabaenopeptin 816 (3). Furthermore, the structure of two homologues, i.e., anabaenopeptin 802 (2a) and anabaenopeptin 802 (2b), was determined by spectroscopic analysis (NMR and MS). Both compounds were shown to exert weak to moderate antiproliferative activity against HeLa cell lines. This study also provides the unique and diverse potential of biosynthetic gene clusters and an assessment of the predicted chemical space yet to be discovered from this genus.


Assuntos
Proliferação de Células/efeitos dos fármacos , Cianobactérias , Peptídeos Cíclicos , Cianobactérias/química , Cianobactérias/genética , Células HeLa , Humanos , Espectrometria de Massas , Ressonância Magnética Nuclear Biomolecular , Peptídeos Cíclicos/química , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/farmacologia
4.
ACS Omega ; 7(14): 11818-11828, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35449984

RESUMO

Puwainaphycins (PUW) and minutissamides (MIN) are structurally homologous cyclic lipopeptides that exhibit high structural variability and possess antifungal and cytotoxic activities. While only a minor variation can be found in the amino acid composition of the peptide cycle, the fatty acid (FA) moiety varies largely. The effect of FA functionalization on the bioactivity of PUW/MIN chemical variants is poorly understood. A rapid and selective liquid chromatography-mass spectrometry-based method led us to identify 13 PUW/MIN (1-13) chemical variants from the benthic cyanobacterium Nodularia harveyana strain UHCC-0300 from the Baltic Sea. Five new variants identified were designated as PUW H (1), PUW I (2), PUW J (4), PUW K (10), and PUW L (13) and varied slightly in the peptidic core composition, but a larger variation was observed in the oxo-, chloro-, and hydroxy-substitutions on the FA moiety. To address the effect of FA substitution on the cytotoxic effect, the major variants (3 and 5-11) together with four other PUW/MIN variants (14-17) previously isolated were included in the study. The data obtained showed that hydroxylation of the FA moiety abolishes the cytotoxicity or significantly reduces it when compared with the oxo-substituted C18-FA (compounds 5-8). The oxo-substitution had only a minor effect on the cytotoxicity of the compound when compared to variants bearing no substitution. The activity of PUW/MIN variants with chlorinated FA moieties varied depending on the position of the chlorine atom on the FA chain. This study also shows that variation in the amino acids distant from the FA moiety (position 4-8 of the peptide cycle) does not play an important role in determining the cytotoxicity of the compound. These findings confirmed that the lipophilicity of FA is essential to maintain the cytotoxicity of PUW/MIN lipopeptides. Further, a 63 kb puwainaphycin biosynthetic gene cluster from a draft genome of the N. harveyana strain UHCC-0300 was identified. This pathway encoded two specific lipoinitiation mechanisms as well as enzymes needed for the modification of the FA moiety. Examination on biosynthetic gene clusters and the structural variability of the produced PUW/MIN suggested different mechanisms of fatty-acyl-AMP ligase cooperation with accessory enzymes leading to a new set of PUW/MIN variants bearing differently substituted FA.

5.
RSC Adv ; 11(49): 30873-30886, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35498921

RESUMO

Microbial cyclic lipopeptides are an important class of antifungal compounds with applications in pharmacology and biotechnology. However, the cytotoxicity of many cyclic lipopeptides limits their potential as antifungal drugs. Here we present a structure-activity relationship study on the puwainaphycin/minutissamide (PUW/MIN) family of cyclic lipopeptides isolated from cyanobacteria. PUWs/MINs with variable fatty acid chain lengths differed in the dynamic of their cytotoxic effect despite their similar IC50 after 48 hours (2.8 µM for MIN A and 3.2 µM for PUW F). Furthermore, they exhibited different antifungal potency with the lowest MIC values obtained for MIN A and PUW F against the facultative human pathogen Aspergillus fumigatus (37 µM) and the plant pathogen Alternaria alternata (0.6 µM), respectively. We used a Grignard-reaction with alkylmagnesium halides to lengthen the lipopeptide FA moiety as well as the Steglich esterification on the free hydroxyl substituents to prepare semi-synthetic lipopeptide variants possessing multiple fatty acid tails. Cyclic lipopeptides with extended and branched FA tails showed improved strain-specific antifungal activity against A. fumigatus (MIC = 0.5-3.8 µM) and A. alternata (MIC = 0.1-0.5 µM), but with partial retention of the cytotoxic effect (∼10-20 µM). However, lipopeptides with esterified free hydroxyl groups possessed substantially higher antifungal potencies, especially against A. alternata (MIC = 0.2-0.6 µM), and greatly reduced or abolished cytotoxic activity (>20 µM). Our findings pave the way for a generation of semi-synthetic variants of lipopeptides with improved and selective antifungal activities.

6.
Folia Microbiol (Praha) ; 64(5): 645-654, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31385159

RESUMO

The rapid emergence of resistance in pathogenic bacteria together with a steep decline in economic incentives has rendered a new wave in the drug development by the pharmaceutical industry and researchers. Since cyanobacteria are recognized as wide producers of pharmaceutically important compounds, we investigated thirty-four cyanobacterial extracts prepared by solvents of different polarities for their antimicrobial potential. Almost all tested cyanobacterial strains exhibited some degree of antimicrobial bioactivity, with more general effect on fungal strains compared with bacteria. Surprisingly ~50% of cyanobacterial extracts exhibited specific activity against one or few bacterial indicator strains with Gram-positive bacteria being more affected. Extracts of two most promising strains were subjected to activity-guided fractionation and determination of the minimum inhibitory concentration (MIC) against selected bacterial and fungal isolates. Multiple fractions were responsible for their antimicrobial effect with MIC reaching low-micromolar concentrations and in some of them high level of specificity was recorded. Twenty-six bioactive fractions analyzed on LC-HRMS/MS and Global Natural Product Social Molecular Networking (GNPS) online workflow using dereplication resulted in identification of only forty-nine peptide spectrum matches (PSMs) with eleven unique metabolites spectrum matches (MSMs). Interestingly, only three fractions from Nostoc calcicola Lukesová 3/97 and four fractions from Desmonostoc sp. Cc2 showed the presence of unique MSMs suggesting the presence of unknown antimicrobial metabolites among majority of bioactive fractions from both the strains. Our results highlight potential for isolation and discovery of potential antimicrobial bioactive lead molecules from cyanobacterial extracts.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Cianobactérias/química , Antibacterianos/metabolismo , Cianobactérias/metabolismo , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Espectrometria de Massas em Tandem
7.
J Chromatogr A ; 1438: 76-83, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26893022

RESUMO

Bacterial lipopeptides, which contain ß-amino fatty acids, are an abundant group of bacterial secondary metabolites exhibiting antifungal and/or cytotoxic properties. Here we have developed an LC-HRMS/MS method for the selective detection of ß-amino fatty acid containing cyclic lipopeptides. The method was optimized using the lipopeptides iturin A and puwainaphycin F, which contain fatty acids of similar length but differ in the amino acid composition of the peptide cycle. Fragmentation energies of 10-55eV were used to obtain the amino acid composition of the peptide macrocycle. However, fragmentation energies of 90-130eV were used to obtain an intense fragment specific for the ß-amino fatty acid (CnH2n+2N(+)). The method allowed the number of carbons and consequently the length of the ß-amino fatty acid to be estimated. We identified 21 puwainaphycin variants differing in fatty acid chain in the crude extract of cyanobacterium Cylindrospermum alatosporum using this method. Analogously 11 iturin A variants were detected. The retention time of the lipopeptide variants showed a near perfect linear dependence (R(2)=0.9995) on the length of the fatty acid chain in linear separation gradient which simplified the detection of minor variants. We used the method to screen 240 cyanobacterial strains and identified lipopeptides from 8 strains. The HPLC-HRMS/MS method developed here provides a rapid and easy way to detecting novel variants of cyclic lipopeptides.


Assuntos
Técnicas de Química Analítica/métodos , Cromatografia Líquida , Lipopeptídeos/análise , Espectrometria de Massas , Aminoácidos/química , Antifúngicos/análise , Cianobactérias/química , Ácidos Graxos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA