RESUMO
Proteoglycans consist of a core protein substituted with one or more glycosaminoglycan (GAG) chains and execute versatile functions during many physiological and pathological processes. The biosynthesis of GAG chains is a complex process that depends on the concerted action of a variety of enzymes. Central to the biosynthesis of heparan sulfate (HS) and chondroitin sulfate/dermatan sulfate (CS/DS) GAG chains is the formation of a tetrasaccharide linker region followed by biosynthesis of HS or CS/DS-specific repeating disaccharide units, which then undergo modifications and epimerization. The importance of these biosynthetic enzymes is illustrated by several severe pleiotropic disorders that arise upon their deficiency. The Ehlers-Danlos syndromes (EDS) constitute a special group among these disorders. Although most EDS types are caused by defects in fibrillar types I, III, or V collagen, or their modifying enzymes, a few rare EDS types have recently been linked to defects in GAG biosynthesis. Spondylodysplastic EDS (spEDS) is caused by defective formation of the tetrasaccharide linker region, either due to ß4GalT7 or ß3GalT6 deficiency, whereas musculocontractural EDS (mcEDS) results from deficiency of D4ST1 or DS-epi1, impairing DS formation. This narrative review highlights the consequences of GAG deficiency in these specific EDS types, summarizes the associated phenotypic features and the molecular spectrum of reported pathogenic variants, and defines the current knowledge on the underlying pathophysiological mechanisms based on studies in patient-derived material, in vitro analyses, and animal models.
Assuntos
Dermatan Sulfato , Síndrome de Ehlers-Danlos , Animais , Dermatan Sulfato/metabolismo , Sulfotransferases/metabolismo , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/metabolismo , Síndrome de Ehlers-Danlos/patologia , Colágeno/metabolismo , ProteoglicanasRESUMO
PURPOSE: To date, heterozygous or homozygous COL12A1 variants have been reported in 13 patients presenting with a clinical phenotype overlapping with collagen VI-related myopathies and Ehlers-Danlos syndrome (EDS). The small number of reported patients limits thorough investigation of this newly identified syndrome, currently coined as myopathic EDS. METHODS: DNA from 78 genetically unresolved patients fulfilling the clinical criteria for myopathic EDS was sequenced using a next-generation panel of COL12A1, COL6A1, COL6A2, and COL6A3. RESULTS: Among this cohort, we identified four pathogenic heterozygous in-frame exon skipping (∆) defects in COL12A1, clustering to the thrombospondin N-terminal region and the adjacent collagenous domain (Δ52, Δ53, Δ54, and Δ56 respectively), one heterozygous COL12A1 arginine-to-cysteine substitution of unclear significance (p.(Arg1863Cys)), and compound heterozygous pathogenic COL6A1 variants (c.[98-6G>A];[301C>T]) in one proband. Variant-specific intracellular accumulation of collagen XII chains, extracellular overmodification of the long isoform and near-absence of the short isoform of collagen XII, and extracellular decrease of decorin and tenascin-X were observed for the COL12A1 variants. In contrast, the COL6A1 variants abolished collagen VI and V deposition and increased tenascin-X levels. CONCLUSION: Our data further support the significant clinical overlap between myopathic EDS and collagen VI-related myopathies, and emphasize the variant-specific consequences of collagen XII defects.
Assuntos
Colágeno Tipo VI/genética , Colágeno Tipo XII/genética , Síndrome de Ehlers-Danlos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Doenças Musculares/genética , Mutação , Adolescente , Adulto , Células Cultivadas , Criança , Pré-Escolar , Colágeno Tipo V/metabolismo , Colágeno Tipo VI/química , Colágeno Tipo XII/química , Decorina/metabolismo , Síndrome de Ehlers-Danlos/metabolismo , Matriz Extracelular/metabolismo , Feminino , Humanos , Masculino , Doenças Musculares/metabolismo , Linhagem , Domínios Proteicos , Análise de Sequência de DNA , Tenascina/metabolismoRESUMO
ß4GalT7 is a transmembrane Golgi enzyme, encoded by B4GALT7, that plays a pivotal role in the proteoglycan linker region formation during proteoglycan biosynthesis. Defects in this enzyme give rise to a rare autosomal recessive form of Ehlers-Danlos syndrome (EDS), currently known as 'spondylodysplastic EDS (spEDS-B4GALT7)'. This EDS subtype is mainly characterized by short stature, hypotonia and skeletal abnormalities, thereby illustrating its pleiotropic importance during human development. Insights into the pathogenic mechanisms underlying this disabling disease are very limited, in part due to the lack of a relevant in vivo model. As the majority of mutations identified in patients with spEDS-B4GALT7 are hypomorphic, we generated zebrafish models with partial loss of B4galt7 function, including different knockdown (morphant) and mosaic knockout (crispant) b4galt7 zebrafish models and studied the morphologic, functional and molecular aspects in embryonic and larval stages. Morphant and crispant zebrafish show highly similar morphological abnormalities in early development including a small, round head, bowed pectoral fins, short body-axis and mild developmental delay. Several craniofacial cartilage and bone structures are absent or strongly misshapen. In addition, the total amount of sulfated glycosaminoglycans is significantly diminished and particularly heparan and chondroitin sulfate proteoglycan levels are greatly reduced. We also show impaired cartilage patterning and loss of chondrocyte organization in a cartilage-specific Tg(Col2a1aBAC:mcherry) zebrafish reporter line. The occurrence of the same abnormalities in the different models confirms these are specifically caused by B4galt7 deficiency. A disturbed actin pattern, along with a lack of muscle tone, was only noted in morphants in which translation of b4galt7 was blocked. In conclusion, we generated the first viable animal models for spEDS-B4GALT7, and show that in early development the human spEDS-B4GALT7 phenotype is faithfully mimicked in these zebrafish models. Our findings underscore a key role for ß4GalT7 in early development of cartilage, bone and muscle. These models will lead to a better understanding of spEDS-B4GALT7 and can be used in future efforts focusing on therapeutic applications.
Assuntos
Síndrome de Ehlers-Danlos/patologia , Galactosiltransferases/genética , Mutação com Perda de Função , Animais , Padronização Corporal , Modelos Animais de Doenças , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/psicologia , Desenvolvimento Embrionário , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Peixe-Zebra , Proteínas de Peixe-Zebra/genéticaRESUMO
Proteoglycans are structurally and functionally diverse biomacromolecules found abundantly on cell membranes and in the extracellular matrix. They consist of a core protein linked to glycosaminoglycan chains via a tetrasaccharide linkage region. Here, we show that CRISPR/Cas9-mediated b3galt6 knock-out zebrafish, lacking galactosyltransferase II, which adds the third sugar in the linkage region, largely recapitulate the phenotypic abnormalities seen in human ß3GalT6-deficiency disorders. These comprise craniofacial dysmorphism, generalized skeletal dysplasia, skin involvement and indications for muscle hypotonia. In-depth TEM analysis revealed disturbed collagen fibril organization as the most consistent ultrastructural characteristic throughout different affected tissues. Strikingly, despite a strong reduction in glycosaminoglycan content, as demonstrated by anion-exchange HPLC, subsequent LC-MS/MS analysis revealed a small amount of proteoglycans containing a unique linkage region consisting of only three sugars. This implies that formation of glycosaminoglycans with an immature linkage region is possible in a pathogenic context. Our study, therefore unveils a novel rescue mechanism for proteoglycan production in the absence of galactosyltransferase II, hereby opening new avenues for therapeutic intervention.