Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Comput Biol Med ; 151(Pt A): 106211, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36327884

RESUMO

Large-scale neuroimaging datasets present unique challenges for automated processing pipelines. Motivated by a large clinical trials dataset with over 235,000 MRI scans, we consider the challenge of defacing - anonymisation to remove identifying facial features. The defacing process must undergo quality control (QC) checks to ensure that the facial features have been removed and that the brain tissue is left intact. Visual QC checks are time-consuming and can cause delays in preparing data. We have developed a convolutional neural network (CNN) that can assist with the QC of the application of MRI defacing; our CNN is able to distinguish between scans that are correctly defaced and can classify defacing failures into three sub-types to facilitate parameter tuning during remedial re-defacing. Since integrating the CNN into our anonymisation pipeline, over 75,000 scans have been processed. Strict thresholds have been applied so that ambiguous classifications are referred for visual QC checks, however all scans still undergo an efficient verification check before being marked as passed. After applying the thresholds, our network is 92% accurate and can classify nearly half of the scans without the need for protracted manual checks. Our model can generalise across MRI modalities and has comparable performance when tested on an independent dataset. Even with the introduction of the verification checks, incorporation of the CNN has reduced the time spent undertaking QC checks by 42% during initial defacing, and by 35% overall. With the help of the CNN, we have been able to successfully deface 96% of the scans in the project whilst maintaining high QC standards. In a similarly sized new project, we would expect the model to reduce the time spent on manual QC checks by 125 h. Our approach is applicable to other projects with the potential to greatly improve the efficiency of imaging anonymisation pipelines.


Assuntos
Imageamento por Ressonância Magnética , Redes Neurais de Computação , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Encéfalo/diagnóstico por imagem , Controle de Qualidade , Processamento de Imagem Assistida por Computador/métodos
2.
Pain ; 163(6): 1139-1157, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35552317

RESUMO

ABSTRACT: Identifying the genetic determinants of pain is a scientific imperative given the magnitude of the global health burden that pain causes. Here, we report a genetic screen for nociception, performed under the auspices of the International Mouse Phenotyping Consortium. A biased set of 110 single-gene knockout mouse strains was screened for 1 or more nociception and hypersensitivity assays, including chemical nociception (formalin) and mechanical and thermal nociception (von Frey filaments and Hargreaves tests, respectively), with or without an inflammatory agent (complete Freund's adjuvant). We identified 13 single-gene knockout strains with altered nocifensive behavior in 1 or more assays. All these novel mouse models are openly available to the scientific community to study gene function. Two of the 13 genes (Gria1 and Htr3a) have been previously reported with nociception-related phenotypes in genetically engineered mouse strains and represent useful benchmarking standards. One of the 13 genes (Cnrip1) is known from human studies to play a role in pain modulation and the knockout mouse reported herein can be used to explore this function further. The remaining 10 genes (Abhd13, Alg6, BC048562, Cgnl1, Cp, Mmp16, Oxa1l, Tecpr2, Trim14, and Trim2) reveal novel pathways involved in nociception and may provide new knowledge to better understand genetic mechanisms of inflammatory pain and to serve as models for therapeutic target validation and drug development.


Assuntos
Nociceptividade , Dor , Animais , Adjuvante de Freund/toxicidade , Camundongos , Camundongos Knockout , Dor/genética , Medição da Dor
3.
Sci Adv ; 4(11): eaau5484, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30417097

RESUMO

Vertebrates have a vast array of epithelial appendages, including scales, feathers, and hair. The developmental patterning of these diverse structures can be theoretically explained by Alan Turing's reaction-diffusion system. However, the role of this system in epithelial appendage patterning of early diverging lineages (compared to tetrapods), such as the cartilaginous fishes, is poorly understood. We investigate patterning of the unique tooth-like skin denticles of sharks, which closely relates to their hydrodynamic and protective functions. We demonstrate through simulation models that a Turing-like mechanism can explain shark denticle patterning and verify this system using gene expression analysis and gene pathway inhibition experiments. This mechanism bears remarkable similarity to avian feather patterning, suggesting deep homology of the system. We propose that a diverse range of vertebrate appendages, from shark denticles to avian feathers and mammalian hair, use this ancient and conserved system, with slight genetic modulation accounting for broad variations in patterning.


Assuntos
Padronização Corporal , Galinhas/fisiologia , Simulação por Computador , Organogênese , Tubarões/fisiologia , Pele/crescimento & desenvolvimento , Animais , Embrião de Galinha , Galinhas/anatomia & histologia , Desenvolvimento Embrionário , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Tubarões/anatomia & histologia , Tubarões/embriologia , Pele/anatomia & histologia
4.
Curr Biol ; 25(20): 2696-700, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26455299

RESUMO

Jaw protrusion is one of the most important innovations in vertebrate feeding over the last 400 million years [1, 2]. Protrusion enables a fish to rapidly decrease the distance between itself and its prey [2, 3]. We assessed the evolution and functional implications of jaw protrusion in teleost fish assemblages from shallow coastal seas since the Cretaceous. By examining extant teleost fishes, we identified a robust morphological predictor of jaw protrusion that enabled us to predict the extent of jaw protrusion in fossil fishes. Our analyses revealed increases in both average and maximum jaw protrusion over the last 100 million years, with a progressive increase in the potential impact of fish predation on elusive prey. Over this period, the increase in jaw protrusion was initially driven by a taxonomic restructuring of fish assemblages, with an increase in the proportion of spiny-rayed fishes (Acanthomorpha), followed by an increase in the extent of protrusion within this clade. By increasing the ability of fishes to catch elusive prey [2, 4], jaw protrusion is likely to have fundamentally changed the nature of predator-prey interactions and may have contributed to the success of the spiny-rayed fishes, the dominant fish clade in modern oceans [5].


Assuntos
Peixes/anatomia & histologia , Peixes/fisiologia , Fósseis/anatomia & histologia , Arcada Osseodentária/anatomia & histologia , Comportamento Predatório , Animais , Evolução Biológica , Fenômenos Biomecânicos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA