Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Cell Sci ; 128(3): 541­52, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25501810

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) are associated with Parkinson's disease, but the precise physiological function of the protein remains ill-defined. Recently, our group proposed a model in which LRRK2 kinase activity is part of an EndoA phosphorylation cycle that facilitates efficient vesicle formation at synapses in the Drosophila melanogaster neuromuscular junctions.Flies harbor only one Lrrk gene, which might encompass the functions of both mammalian LRRK1 and LRRK2. We therefore studied the role of LRRK2 in mammalian synaptic function and provide evidence that knockout or pharmacological inhibition of LRRK2 results in defects in synaptic vesicle endocytosis, altered synaptic morphology and impairments in neurotransmission. In addition, our data indicate that mammalian endophilin A1 (EndoA1,also known as SH3GL2) is phosphorylated by LRRK2 in vitro at T73 and S75, two residues in the BAR domain. Hence, our results indicate that LRRK2 kinase activity has an important role in the regulation of clathrin-mediated endocytosis of synaptic vesicles and subsequent neurotransmission at the synapse.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Endocitose/genética , Proteínas Serina-Treonina Quinases/genética , Transmissão Sináptica/genética , Vesículas Sinápticas/genética , Animais , Células Cultivadas , Clatrina/metabolismo , Drosophila melanogaster , Dinamina I/antagonistas & inibidores , Endocitose/efeitos dos fármacos , Hipocampo/citologia , Hidrazonas/farmacologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Long-Evans , Sacarose/farmacologia , Transmissão Sináptica/efeitos dos fármacos
2.
Acta Neuropathol Commun ; 6(1): 59, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-30001207

RESUMO

Aggregation of tau protein and spreading of tau aggregates are pivotal pathological processes in a range of neurological disorders. Accumulating evidence suggests that immunotherapy targeting tau may be a viable therapeutic strategy. We have previously described the isolation of antibody CBTAU-22.1 from the memory B-cell repertoire of healthy human donors. CBTAU-22.1 was shown to specifically bind a disease-associated phosphorylated epitope in the C-terminus of tau (Ser422) and to be able to inhibit the spreading of pathological tau aggregates from P301S spinal cord lysates in vitro, albeit with limited potency. Using a combination of rational design and random mutagenesis we have derived a variant antibody with improved affinity while maintaining the specificity of the parental antibody. This affinity improved antibody showed greatly enhanced potency in a cell-based immunodepletion assay using paired helical filaments (PHFs) derived from human Alzheimer's disease (AD) brain tissue. Moreover, the affinity improved antibody limits the in vitro aggregation propensity of full length tau species specifically phosphorylated at position 422 produced by employing a native chemical ligation approach. Together, these results indicate that in addition to being able to inhibit the spreading of pathological tau aggregates, the matured antibody can potentially also interfere with the nucleation of tau which is believed to be the first step of the pathogenic process. Finally, the functionality in a P301L transgenic mice co-injection model highlights the therapeutic potential of human antibody dmCBTAU-22.1.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Anticorpos/farmacologia , Encéfalo/metabolismo , Serina/metabolismo , Proteínas tau/imunologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Animais , Afinidade de Anticorpos/efeitos dos fármacos , Autopsia , Encéfalo/patologia , Relação Dose-Resposta a Droga , Epitopos/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Força Atômica , Pessoa de Meia-Idade , Modelos Moleculares , Mutagênese , Mutação/genética , Fosforilação/fisiologia , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Agregação Patológica de Proteínas/terapia
3.
J Alzheimers Dis ; 65(1): 265-281, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30040731

RESUMO

The tau spreading hypothesis provides rationale for passive immunization with an anti-tau monoclonal antibody to block seeding by extracellular tau aggregates as a disease-modifying strategy for the treatment of Alzheimer's disease (AD) and potentially other tauopathies. As the biochemical and biophysical properties of the tau species responsible for the spatio-temporal sequences of seeding events are poorly defined, it is not yet clear which epitope is preferred for obtaining optimal therapeutic efficacy. Our internal tau antibody collection has been generated by immunizations with different tau species: aggregated- and non-aggregated tau and human postmortem AD brain-derived tau fibrils. In this communication, we describe and characterize a set of these anti-tau antibodies for their biochemical and biophysical properties, including binding, tissue staining by immunohistochemistry, and epitope. The antibodies bound to different domains of the tau protein and some were demonstrated to be isoform-selective (PT18 and hTau56) or phospho-selective (PT84). Evaluation of the antibodies in cellular- and in vivo seeding assays revealed clear differences in maximal efficacy. Limited proteolysis experiments support the hypothesis that some epitopes are more exposed than others in the tau seeds. Moreover, antibody efficacy seems to depend on the structural properties of fibrils purified from tau Tg mice- and postmortem human AD brain.


Assuntos
Doença de Alzheimer/patologia , Anticorpos Monoclonais/metabolismo , Encéfalo/metabolismo , Proteínas tau/imunologia , Animais , Mapeamento de Epitopos , Feminino , Células HEK293 , Humanos , Imunização Passiva , Masculino , Camundongos , Camundongos Knockout , Mutação/genética , Ressonância de Plasmônio de Superfície , Proteínas tau/deficiência , Proteínas tau/genética
4.
Neurobiol Aging ; 34(1): 319-37, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22738723

RESUMO

Epidemiological evidence implies a role for chronic stress and stress-related disorders in the etiopathogenesis of sporadic Alzheimer's disease (AD). Although chronic stress exposure during various stages of life has been shown to exacerbate AD-related cognitive deficits and neuropathology in AD mouse models, the role of stress exposure during the prenatal period on AD development and progression remained to be investigated. The present study therefore explored the effects of prenatal maternal stress (PMS) in both male and female APPswe/PS1dE9 mouse offspring in terms of cognition, affect, and AD-related neuropathology. As prenatal perturbations are likely to mediate their effects via alterations in epigenetic regulation, changes in hippocampal DNA methyltransferase 3a, 5-methylcytosine and 5-hydroxymethylcytosine levels were assessed as underlying mechanisms. Repetitive restraint stress during the first week of gestation exerted a sex-dependent effect, with male PMS mice showing spatial memory deficits and a blunted hypothalamus-pituitary-adrenal axis response, while female PMS mice showed improved spatial memory performance, increased depressive-like behavior, as well as a decrease in hippocampal plaque load. In addition, sex differences were observed among APPswe/PS1dE9 mice, independent of PMS (i.e., female mice showed impaired spatial memory performance, higher hippocampal plaque load, altered amyloid precursor protein processing in the CA3 and lower DNA methyltransferase 3a immunoreactivity in the dentate gyrus when compared with male mice of the same age). In conclusion, PMS exposure impacts on the behavioral phenotype and neuropathology of APPswe/PS1dE9 mice. Moreover, given the remarkable sex differences observed, one should not overlook the impact of sex-specific responses to environmental exposures when investigating gene-environment interactions in AD.


Assuntos
Doença de Alzheimer/complicações , Sintomas Comportamentais/etiologia , Transtornos Cognitivos/etiologia , Transtornos da Memória/etiologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Estresse Psicológico/complicações , 5-Metilcitosina/metabolismo , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Benzofuranos , Citosina/análogos & derivados , Citosina/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Modelos Animais de Doenças , Feminino , Hipocampo/enzimologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Gravidez , Presenilina-1/genética , Quinolinas , Percepção Espacial/fisiologia , Estresse Psicológico/patologia
5.
J Pharm Biomed Anal ; 76: 49-58, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23313773

RESUMO

After the discovery of kinase activating mutations in leucine-rich repeat kinase 2 (LRRK2) as associated with autosomal dominant forms of Parkinson's disease, inhibition of the kinase is being extensively explored as a disease modifying strategy. As signaling properties and substrate(s) of LRRK2 are poorly documented, autophosphorylation has been an important readout for the enzyme's activity. Western blotting using anti-phospho-S910 or S935 LRRK2 antibodies showed effectiveness in demonstrating inhibitory effects of compounds. In this communication we describe two types of enzyme-linked immunosorbent assays (ELISA) to determine LRRK2 protein levels and kinase activity. Both assays take advantage of the sensitivity of the earlier described total and pS935 antibodies for detection (Nichols et al., Biochem. J. 2010) [10]. The first assay is based on anti-GFP-based capturing of overexpressed LRRK2 and is highly suitable to show cellular effects of kinase inhibitors in a 96-well format. In the other platform anti-LRRK2-based capturing allows detection of endogenously expressed LRRK2 in rat tissue with no significant signal in tissue from LRRK2 knockout rats. Furthermore, both assays showed a significant reduction in pS935 levels on cellular and transgenic R1441C/G LRRK2. With the anti-LRRK2 ELISA we were able to detect LRRK2 phosphorylation in human peripheral blood mononuclear cells (PBMC). To conclude, we report two sensitive assays to monitor LRRK2 expression and kinase activity in samples coming from cellular and in vivo experimental settings. Both can show their value in drug screening and biomarker development but will also be useful in the elucidation of LRRK2-mediated signaling pathways.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Western Blotting , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação , Ratos , Ratos Long-Evans , Sensibilidade e Especificidade
6.
Neuron ; 75(6): 1008-21, 2012 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-22998870

RESUMO

LRRK2 is a kinase mutated in Parkinson's disease, but how the protein affects synaptic function remains enigmatic. We identified LRRK2 as a critical regulator of EndophilinA. Using genetic and biochemical studies involving Lrrk loss-of-function mutants and Parkinson-related LRRK2(G2019S) gain-of-kinase function, we show that LRRK2 affects synaptic endocytosis by phosphorylating EndoA at S75, a residue in the BAR domain. We show that LRRK2-mediated EndoA phosphorylation has profound effects on EndoA-dependent membrane tubulation and membrane association in vitro and in vivo and on synaptic vesicle endocytosis at Drosophila neuromuscular junctions in vivo. Our work uncovers a regulatory mechanism that indicates that reduced LRRK2 kinase activity facilitates EndoA membrane association, while increased kinase activity inhibits membrane association. Consequently, both too much and too little LRRK2-dependent EndoA phosphorylation impedes synaptic endocytosis, and we propose a model in which LRRK2 kinase activity is part of an EndoA phosphorylation cycle that facilitates efficient vesicle formation at synapses.


Assuntos
Aciltransferases/metabolismo , Proteínas de Drosophila/metabolismo , Endocitose/fisiologia , Junção Neuromuscular/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Aciltransferases/genética , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Encéfalo/metabolismo , Células CHO , Cálcio/metabolismo , Clatrina/metabolismo , Cricetinae , Drosophila , Proteínas de Drosophila/genética , Endocitose/genética , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Espectrometria de Massas , Camundongos , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Mutação/genética , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/ultraestrutura , Fosforilação/genética , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Alinhamento de Sequência , Serina/genética , Serina/metabolismo , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/genética , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/fisiologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA