RESUMO
Venezuelan equine encephalitis virus (VEEV) is a highly virulent pathogen whose nuclear localization signal (NLS) sequence from capsid protein binds to the host importin-α transport protein and blocks nuclear import. We studied the molecular mechanisms by which two small ligands, termed I1 and I2, interfere with the binding of VEEV's NLS peptide to importin-α protein. To this end, we performed all-atom replica exchange molecular dynamics simulations probing the competitive binding of the VEEV coreNLS peptide and I1 or I2 ligand to the importin-α major NLS binding site. As a reference, we used our previous simulations, which examined noncompetitive binding of the coreNLS peptide or the inhibitors to importin-α. We found that both inhibitors completely abrogate the native binding of the coreNLS peptide, forcing it to adopt a manifold of nonnative loosely bound poses within the importin-α major NLS binding site. Both inhibitors primarily destabilize the native coreNLS binding by masking its amino acids rather than competing with it for binding to importin-α. Because I2, in contrast to I1, binds off-site localizing on the edge of the major NLS binding site, it inhibits fewer coreNLS native binding interactions than I1. Structural analysis is supported by computations of the free energies of the coreNLS peptide binding to importin-α with or without competition from the inhibitors. Specifically, both inhibitors reduce the free energy gain from coreNLS binding, with I1 causing significantly larger loss than I2. To test our simulations, we performed AlphaScreen experiments measuring IC50 values for both inhibitors. Consistent with in silico results, the IC50 value for I1 was found to be lower than that for I2. We hypothesize that the inhibitory action of I1 and I2 ligands might be specific to the NLS from VEEV's capsid protein.
Assuntos
Ligação Competitiva , Simulação de Dinâmica Molecular , Sinais de Localização Nuclear , alfa Carioferinas , alfa Carioferinas/metabolismo , alfa Carioferinas/química , alfa Carioferinas/antagonistas & inibidores , Ligantes , Sinais de Localização Nuclear/química , Vírus da Encefalite Equina Venezuelana/metabolismo , Vírus da Encefalite Equina Venezuelana/química , Ligação Proteica , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Sequência de AminoácidosRESUMO
Using all-atom replica-exchange molecular dynamics simulations, we mapped the mechanisms of binding of the nuclear localization signal (NLS) sequence from Venezuelan equine encephalitis virus (VEEV) capsid protein to importin-α (impα) transport protein. Our objective was to identify the VEEV NLS sequence fragment that confers native, experimentally resolved binding to impα as well as to study associated binding energetics and conformational ensembles. The two selected VEEV NLS peptide fragments, KKPK and KKPKKE, show strikingly different binding mechanisms. The minNLS peptide KKPK binds non-natively and nonspecifically by adopting five diverse conformational clusters with low similarity to the x-ray structure 3VE6 of NLS-impα complex. Despite the prevalence of non-native interactions, the minNLS peptide still largely binds to the impα major NLS binding site. In contrast, the coreNLS peptide KKPKKE binds specifically and natively, adopting a largely homogeneous binding ensemble with a dominant, highly native-like conformational cluster. The coreNLS peptide retains most of native binding interactions, including π-cation contacts and a tryptophan cage. While KKPK binding is governed by a complex multistate free energy landscape featuring transitions between multiple binding poses, the coreNLS peptide free energy map is simple, exhibiting a single dominant native-like bound basin. We argue that the origin of the coreNLS peptide binding specificity is several electrostatic interactions formed by the two C-terminal amino acids, Lys10 and Glu11, with impα. The coreNLS sequence is then sufficient for native binding, but none of the amino acids flanking minNLS, including Lys10 and Glu11, are strictly necessary for the native pose. Our analyses indicate that the VEEV coreNLS sequence is virtually unique among human and viral proteins interacting with impα making it a potential target for VEEV-specific inhibitors.
Assuntos
Sinais de Localização Nuclear , Proteínas Nucleares , Humanos , Sinais de Localização Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Carioferinas/metabolismo , alfa Carioferinas/metabolismo , Ligação Proteica , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Aminoácidos/metabolismo , Sítios de LigaçãoRESUMO
Free energy perturbation coupled with replica exchange with solute tempering (FEP/REST) offers a rigorous approach to compute relative free energy changes for ligands. To determine the applicability of FEP/REST for the ligands with distributed binding poses, we considered two alchemical transformations involving three putative inhibitors I0, I1, and I2 of the Venezuelan equine encephalitis virus nuclear localization signal sequence binding to the importin-α (impα) transporter protein. I0 â I1 and I0 â I2 transformations, respectively, increase or decrease the polarity of the parent molecule. Our objective was three-foldâ(i) to verify FEP/REST technical performance and convergence, (ii) to estimate changes in binding free energy ΔΔG, and (iii) to determine the utility of FEP/REST simulations for conformational binding analysis. Our results are as follows. First, our FEP/REST implementation properly follows FEP/REST formalism and produces converged ΔΔG estimates. Due to ligand inherent unbinding, the better FEP/REST strategy lies in performing multiple independent trajectories rather than extending their length. Second, I0 â I1 and I0 â I2 transformations result in overall minor changes in inhibitor binding free energy, slightly strengthening the affinity of I1 and weakening that of I2. Electrostatic interactions dominate binding interactions, determining the enthalpic changes. The two transformations cause opposite entropic changes, which ultimately govern binding affinities. Importantly, we confirm the validity of FEP/REST free energy estimates by comparing them with our previous REST simulations, directly probing binding of three ligands to impα. Third, we established that FEP/REST simulations can sample binding ensembles of ligands. Thus, FEP/REST can be applied (i) to study the energetics of the ligand binding without defined poses and showing minor differences in affinities |ΔΔG| â² 0.5 kcal/mol and (ii) to collect ligand binding conformational ensembles.
Assuntos
Simulação de Dinâmica Molecular , Ligantes , Ligação Proteica , Sítios de Ligação , Entropia , TermodinâmicaRESUMO
Using an all-atom explicit water model and replica exchange umbrella sampling simulations, we investigated the molecular mechanisms of benzoic acid partitioning into two model lipid bilayers. The first was formed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipids, whereas the second was composed of an equimolar mixture of DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine, palmitoylsphingomyelin, and cholesterol to constitute a blood-brain barrier (BBB) mimetic bilayer. Comparative analysis of benzoic acid partitioning into the two bilayers has revealed qualitative similarities. Partitioning into the DMPC and BBB bilayers is thermodynamically favorable although insertion into the former lowers the free energy of benzoic acid by approximately an additional 1 kcal mol-1. The partitioning energetics for the two bilayers is also largely similar based on the balance of benzoic acid interactions with apolar fatty acid tails, polar lipid headgroups, and water. In both bilayers, benzoic acid retains a considerable number of residual water molecules until reaching the bilayer midplane where it experiences nearly complete dehydration. Upon insertion into the bilayers, benzoic acid undergoes several rotations primarily determined by the interactions with the lipid headgroups. Nonetheless, in addition to the depth of the free energy minimum, the BBB bilayer differs from the DMPC counterpart by a much deeper location of the free energy minimum and the appearance of a high free energy barrier and positioning of benzoic acid near the midplane. Furthermore, DMPC and BBB bilayers exhibit different structural responses to benzoic acid insertion. Taken together, the BBB mimetic bilayer is preferable for an accurate description of benzoic acid partitioning.
Assuntos
Dimiristoilfosfatidilcolina , Fosforilcolina , Ácido Benzoico , Barreira Hematoencefálica , Bicamadas Lipídicas , Simulação de Dinâmica MolecularRESUMO
Several small molecule inhibitors have been designed to block binding of the Venezuelan equine encephalitis virus (VEEV) nuclear localization signal (NLS) sequence to the importin-α nuclear transport protein. To probe the inhibition mechanism on a molecular level, we used all-atom explicit water replica exchange molecular dynamics to study the binding of two inhibitors, I1 and I2, to the coreNLS peptide, representing the core fragment of the VEEV NLS sequence. Our objective was to evaluate the possibility of masking wherein binding of these inhibitors to the coreNLS occurs prior to its binding to importin-α. We found that the free energy of I1 and I2 binding to the coreNLS is less favorable than that to importin-α. This outcome argues against preemptive inhibitor binding to the coreNLS prior to importin-α. Instead, both inhibitors are expected to compete with the coreNLS peptide for binding to importin-α. The two factors responsible for the low affinities of the inhibitors to the coreNLS peptide are (i) the low cooperativity of binding to the peptide and (ii) the strong hydrophobic effect associated with binding to importin-α. Our results further show that upon binding to the coreNLS peptide, the inhibitors form multiple diverse binding poses. The coreNLS peptide coincubated with I1 and I2 adopts several conformational states, including open and collapsed, which underscores the fluidity of the coreNLS conformational ensemble as a target for inhibitors. Taken together with our prior investigations, this study sheds light on the molecular mechanism by which I1 and I2 ligands inhibit binding of the VEEV capsid protein to importin-α.
RESUMO
The impact of Lys28 acetylation on Alzheimer's Aß peptide binding to the lipid bilayer has not been previously studied, either experimentally or computationally. To probe this common post-translational modification, we performed all-atom replica exchange molecular dynamics simulations targeting binding and aggregation of acetylated acAß25-35 peptide within the DMPC bilayer. Using the unmodified Aß25-35 studied previously as a reference, our results can be summarized as follows. First, Lys28 acetylation strengthens the Aß25-35 hydrophobic moment and consequently promotes the helical structure across the peptide extending it into the N-terminus. Second, because Lys28 acetylation disrupts electrostatic contact between Lys28 and lipid phosphate groups, it reduces the binding affinity of acAß25-35 peptides to the DMPC bilayer. Accordingly, although acetylation preserves the bimodal binding featuring a preferred inserted state and a less probable surface bound state, it decreases the stability of the former. Third, acetylation promotes acAß25-35 aggregation and eliminates monomers as thermodynamically viable species. More importantly, acAß25-35 retains as the most thermodynamically stable the inserted dimer with unique head-to-tail helical aggregation interface. However, due to enhanced helix structure, this dimer state becomes less stable and is less likely to propagate into higher order aggregates. Thus, acetylation is predicted to facilitate the formation of low-molecular-weight oligomers. Other post-translational modifications, including phosphorylation and oxidation, reduce helical propensity and have divergent impact on aggregation. Consequently, acetylation, when considered in its totality, has distinct consequences on Aß25-35 binding and aggregation in the lipid bilayer.
Assuntos
Dimiristoilfosfatidilcolina , Lisina , Lisina/metabolismo , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Dimerização , Bicamadas Lipídicas/metabolismo , Acetilação , Peptídeos beta-Amiloides/metabolismo , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/metabolismo , Processamento de Proteína Pós-TraducionalRESUMO
Although Venezuelan equine encephalitis virus (VEEV) is a life-threatening pathogen with a capacity for epidemic outbreaks, there are no FDA-approved VEEV antivirals for humans. VEEV cytotoxicity is partially attributed to the formation of a tetrameric complex between the VEEV capsid protein, the nuclear import proteins importin-α and importin-ß, and the nuclear export protein CRM1, which together block trafficking through the nuclear pore complex. Experimental studies have identified small molecules from the CL6662 scaffold as potential inhibitors of the viral nuclear localization signal (NLS) sequence binding to importin-α. However, little is known about the molecular mechanism of CL6662 inhibition. To address this issue, we employed all-atom replica exchange molecular dynamics simulations to probe, in atomistic detail, the binding mechanism of CL6662 ligands to importin-α. Three ligands, including G281-1485 and two congeners with varying hydrophobicities, were considered. We investigated the distribution of ligand binding poses, their locations, and ligand specificities measured by the strength of binding interactions. We found that G281-1485 binds nonspecifically without forming well-defined binding poses throughout the NLS binding site. Binding of the less hydrophobic congener becomes strongly on-target with respect to the NLS binding site but remains nonspecific. However, a more hydrophobic congener is a strongly specific binder and the only ligand out of three to form a well-defined binding pose, while partially overlapping with the NLS binding site. On the basis of free energy estimates, we argue that all three ligands weakly compete with the viral NLS sequence for binding to importin-α in an apparent compromise to preserve host NLS binding. We further show that all-atom replica exchange binding simulations are a viable tool for studying ligands binding nonspecifically without forming well-defined binding poses.
Assuntos
Vírus da Encefalite Equina Venezuelana , alfa Carioferinas , Animais , Cavalos , Humanos , alfa Carioferinas/química , alfa Carioferinas/metabolismo , Vírus da Encefalite Equina Venezuelana/metabolismo , Simulação de Dinâmica Molecular , Ligantes , Sinais de Localização Nuclear/química , Sinais de Localização Nuclear/metabolismo , Núcleo Celular/metabolismo , Sítios de Ligação , Ligação ProteicaRESUMO
We used all-atom replica-exchange umbrella sampling molecular dynamics simulations to investigate the partitioning of the charged tetrapeptide KLVF and its neutral apolar counterpart VVIA into the blood-brain barrier (BBB)-mimetic bilayer. Our findings allowed us to reconstruct the partitioning mechanism for these two Aß peptide fragments. Despite dissimilar sequences, their permeation shares significant common features. Computations of free energies and permeabilities show that partitioning of both peptides is highly unfavorable, ruling out passive transport. The peptides experience multiple rotational transitions within the bilayer and typically cause considerable lipid disorder and bilayer thinning. Near the bilayer midplane, they lose almost entirely their solvation shell and the interactions with the lipid headgroups. The peptides cause complex reorganization within the proximal bilayer region. Upon insertion, they induce striking cholesterol influx reversed by its depletion and the influx of DMPC when the peptides reach the midplane. The differences in partitioning mechanisms are due to the much higher polarity of KLVF peptide, the permeation of which is more unfavorable and which exclusively assumes vertical orientations within the bilayer. In contrast, VVIA positions itself flat between the leaflets, causing minor disorder and even thickening of the BBB-mimetic bilayer. Due to the high density of the cholesterol-rich BBB bilayer, the unfavorable work associated with the peptide insertion provides a significant, but not dominant, contribution to the partition free energy, which is still governed by dehydration and loss of peptide-headgroup interactions. Comparison with experiments indicates that KLVF and VVIA permeation is similar to that of proline tetrapeptide, mannitol, or cimetidine, all of which exhibit no passive transport.
Assuntos
Dimiristoilfosfatidilcolina , Fragmentos de Peptídeos , Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/metabolismo , Bicamadas Lipídicas , Simulação de Dinâmica MolecularRESUMO
Using all-atom explicit solvent replica exchange molecular dynamics simulations, we studied the aggregation of oxidized (ox) Aß25-35 peptides into dimers mediated by the zwitterionic dimyristoylphosphatidylcholine (DMPC) lipid bilayer. By comparing oxAß25-35 aggregation with that observed for reduced and phosphorylated Aß25-35 peptides, we elucidated plausible impact of post-translational modifications on cytotoxicity of Aß peptides involved in Alzheimer's disease. We found that Met35 oxidation reduces helical propensity in oxAß25-35 peptides bound to the lipid bilayer and enhances backbone fluctuations. These factors destabilize the wild-type head-to-tail dimer interface and lower the aggregation propensity. Met35 oxidation diversifies aggregation pathways by adding monomeric species to the bound conformational ensemble. The oxAß25-35 dimer becomes partially expelled from the DMPC bilayer and as a result inflicts limited disruption to the bilayer structure compared to wild-type Aß25-35. Interestingly, the effect of Ser26 phosphorylation is largely opposite, as it preserves the wild-type head-to-tail aggregation interface and strengthens, not weakens, aggregation propensity. The differing effects can be attributed to the sequence locations of these post-translational modifications, since in contrast to Ser26 phosphorylation, Met35 oxidation directly affects the wild-type C-terminal aggregation interface. A comparison with experimental data is provided.