RESUMO
PURPOSE: The implementation of genomic-based medicine is hindered by unresolved questions regarding data privacy and delivery of interpreted results to health-care practitioners. We used DNA-based prediction of HIV-related outcomes as a model to explore critical issues in clinical genomics. METHODS: We genotyped 4,149 markers in HIV-positive individuals. Variants allowed for prediction of 17 traits relevant to HIV medical care, inference of patient ancestry, and imputation of human leukocyte antigen (HLA) types. Genetic data were processed under a privacy-preserving framework using homomorphic encryption, and clinical reports describing potentially actionable results were delivered to health-care providers. RESULTS: A total of 230 patients were included in the study. We demonstrated the feasibility of encrypting a large number of genetic markers, inferring patient ancestry, computing monogenic and polygenic trait risks, and reporting results under privacy-preserving conditions. The average execution time of a multimarker test on encrypted data was 865 ms on a standard computer. The proportion of tests returning potentially actionable genetic results ranged from 0 to 54%. CONCLUSIONS: The model of implementation presented herein informs on strategies to deliver genomic test results for clinical care. Data encryption to ensure privacy helps to build patient trust, a key requirement on the road to genomic-based medicine.Genet Med 18 8, 814-822.
Assuntos
Segurança Computacional , Privacidade Genética , Infecções por HIV/genética , Variação Genética , Genômica/ética , Humanos , Modelos TeóricosRESUMO
Although non-melanoma skin cancer (NMSC) is the most common human cancer and its incidence continues to rise worldwide, the mechanisms underlying its development remain incompletely understood. Here, we unveil a cascade of events involving peroxisome proliferator-activated receptor (PPAR) ß/δ and the oncogene Src, which promotes the development of ultraviolet (UV)-induced skin cancer in mice. UV-induced PPARß/δ activity, which directly stimulated Src expression, increased Src kinase activity and enhanced the EGFR/Erk1/2 signalling pathway, resulting in increased epithelial-to-mesenchymal transition (EMT) marker expression. Consistent with these observations, PPARß/δ-null mice developed fewer and smaller skin tumours, and a PPARß/δ antagonist prevented UV-dependent Src stimulation. Furthermore, the expression of PPARß/δ positively correlated with the expression of SRC and EMT markers in human skin squamous cell carcinoma (SCC), and critically, linear models applied to several human epithelial cancers revealed an interaction between PPARß/δ and SRC and TGFß1 transcriptional levels. Taken together, these observations motivate the future evaluation of PPARß/δ modulators to attenuate the development of several epithelial cancers.