Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cytotherapy ; 21(7): 738-754, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31133491

RESUMO

BACKGROUND: Human platelet lysate (hPL) represents a powerful alternative to fetal bovine serum (FBS) for human mesenchymal stromal cell (hMSC) expansion. However, the large variability in hPL sources and production protocols gives rise to discrepancies in product quality, characterization and poor batch-to-batch standardization. METHODS: hPL prepared with more than 200 donors (200+DhPL) or with five donors (5DhPL) were compared in terms of growth factor (GF) contents and biochemical analysis. A multiple protein assay and proteomic analysis were performed to further characterize 200+DhPL batches. We also compared the phenotypic and functional characteristics of bone marrow (BM)-hMSCs grown in 200+DhPL versus FBS+basic fibroblast growth factor (bFGF). RESULTS: By contrast to 5DhPL, industrial 200+DhPL displayed a strong standardization of GF contents and biochemical characteristics. We identified specific plasmatic components and platelet-released factors as the most relevant markers for the evaluation of the standardization of hPL batches. We used a multiplex assay and proteomic analysis of 200+DhPL to establish a proteomic signature and demonstrated the robust standardization of batches. 200+DhPL was shown to improve and standardize BM-hMSC expansion compared with FBS+bFGF. The levels of expression of BM-hMSC membrane markers were found to be much more homogeneous between batches when cells were cultured in 200+DhPL. BM-hMSCs cultured in parallel under both conditions displayed similar adipogenic and osteogenic differentiation potential and immunosuppressive properties. CONCLUSIONS: We report a standardization of hPL and the importance of such standardization for the efficient amplification of more homogeneous and reproducible cell therapy products.


Assuntos
Plaquetas/citologia , Células da Medula Óssea/citologia , Técnicas de Cultura de Células/normas , Células-Tronco Mesenquimais/citologia , Adipogenia , Biomarcadores/análise , Plaquetas/química , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Proliferação de Células , Terapia Baseada em Transplante de Células e Tecidos/normas , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Mesenquimais/fisiologia , Osteogênese , Proteômica
2.
Transfusion ; 59(3): 1069-1079, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30793328

RESUMO

BACKGROUND: Human platelet lysate (hPL) represents a powerful medium supplement for human mesenchymal stromal cell (hMSC) expansion. The recently published general chapters of the Pharmacopeia require the addition of a step of viral inactivation during the production process of such raw biological material used for cell-based medicinal products. STUDY DESIGN AND METHODS: The ability of gamma irradiation to inactivate viruses from a panel representative of the virus diversity was evaluated. The impact of gamma irradiation on hPL composition and efficiency as a supplement for hMSC culture was evaluated. RESULTS: An efficient inactivation of all the viruses tested was demonstrated, with the minimum reduction factors obtained being superior to 4.5 log10 for human immunodeficiency virus (HIV) and hepatitis A virus (HAV) and superior to 5 log10 for bovine viral diarrhea virus (BVDV), pseudorabies virus (PRV) and porcine parvovirus (PPV). The gamma irradiation did not affect the content in interesting biochemical factors for cell culture or in growth factors (GF), except to basic fibroblast GF (bFGF) whereas it highly impacted the contents in the factors involved in the coagulation cascade. Finally, gamma irradiated hPL remained as efficient as non-irradiated hPL for the proliferation, clonogenic potential, differentiation potential, and immunosuppressive properties of hMSCs. CONCLUSION: The feasibility of using gamma irradiation to efficiently inactivate viruses in hPL while maintaining its optimal efficacy as a supplement for hMSC expansion was demonstrated. Such an inactivated hPL represents a very attractive raw material for the efficient production of safe cellular therapy products.


Assuntos
Raios gama , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos da radiação , Inativação de Vírus/efeitos da radiação , Adipogenia/efeitos da radiação , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos da radiação , Técnicas de Cultura de Células , Proliferação de Células/fisiologia , Humanos , Osteogênese/efeitos da radiação
3.
Mol Ther ; 26(2): 618-633, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29221805

RESUMO

After intra-arterial delivery in the dystrophic dog, allogeneic muscle-derived stem cells, termed MuStem cells, contribute to long-term stabilization of the clinical status and preservation of the muscle regenerative process. However, it remains unknown whether the human counterpart could be identified, considering recent demonstrations of divergent features between species for several somatic stem cells. Here, we report that MuStem cells reside in human skeletal muscle and display a long-term ability to proliferate, allowing generation of a clinically relevant amount of cells. Cultured human MuStem (hMuStem) cells do not express hematopoietic, endothelial, or myo-endothelial cell markers and reproducibly correspond to a population of early myogenic-committed progenitors with a perivascular/mesenchymal phenotypic signature, revealing a blood vessel wall origin. Importantly, they exhibit both myogenesis in vitro and skeletal muscle regeneration after intramuscular delivery into immunodeficient host mice. Together, our findings provide new insights supporting the notion that hMuStem cells could represent an interesting therapeutic candidate for dystrophic patients.


Assuntos
Músculo Esquelético/fisiologia , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/transplante , Regeneração , Transplante de Células-Tronco , Células-Tronco Adultas , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Camundongos , Desenvolvimento Muscular , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/terapia , Medicina Regenerativa
4.
Cancer Cell ; 11(5): 421-9, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17482132

RESUMO

The cellular origin of Ewing tumor (ET), a tumor of bone or soft tissues characterized by specific fusions between EWS and ETS genes, is highly debated. Through gene expression analysis comparing ETs with a variety of normal tissues, we show that the profiles of different EWS-FLI1-silenced Ewing cell lines converge toward that of mesenchymal stem cells (MSC). Moreover, upon EWS-FLI1 silencing, two different Ewing cell lines can differentiate along the adipogenic lineage when incubated in appropriate differentiation cocktails. In addition, Ewing cells can also differentiate along the osteogenic lineage upon long-term inhibition of EWS-FLI1. These in silico and experimental data strongly suggest that the inhibition of EWS-FLI1 may allow Ewing cells to recover the phenotype of their MSC progenitor.


Assuntos
Neoplasias Ósseas/patologia , Células-Tronco Mesenquimais/citologia , Sarcoma de Ewing/patologia , Sequência de Bases , Neoplasias Ósseas/genética , Diferenciação Celular , Linhagem Celular Tumoral , Primers do DNA , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sarcoma de Ewing/genética
5.
Am J Pathol ; 179(5): 2501-18, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21924229

RESUMO

Duchenne muscular dystrophy (DMD) is a genetic progressive muscle disease resulting from the lack of dystrophin and without effective treatment. Adult stem cell populations have given new impetus to cell-based therapy of neuromuscular diseases. One of them, muscle-derived stem cells, isolated based on delayed adhesion properties, contributes to injured muscle repair. However, these data were collected in dystrophic mice that exhibit a relatively mild tissue phenotype and clinical features of DMD patients. Here, we characterized canine delayed adherent stem cells and investigated the efficacy of their systemic delivery in the clinically relevant DMD animal model to assess potential therapeutic application in humans. Delayed adherent stem cells, named MuStem cells (muscle stem cells), were isolated from healthy dog muscle using a preplating technique. In vitro, MuStem cells displayed a large expansion capacity, an ability to proliferate in suspension, and a multilineage differentiation potential. Phenotypically, they corresponded to early myogenic progenitors and uncommitted cells. When injected in immunosuppressed dystrophic dogs, they contributed to myofiber regeneration, satellite cell replenishment, and dystrophin expression. Importantly, their systemic delivery resulted in long-term dystrophin expression, muscle damage course limitation with an increased regeneration activity and an interstitial expansion restriction, and persisting stabilization of the dog's clinical status. These results demonstrate that MuStem cells could provide an attractive therapeutic avenue for DMD patients.


Assuntos
Células Musculares/transplante , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/terapia , Transplante de Células-Tronco/métodos , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Cães , Distrofina/metabolismo , Imunossupressores/farmacologia , Injeções Intramusculares , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Células-Tronco/citologia , Transplante Homólogo
6.
Front Immunol ; 13: 976511, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059533

RESUMO

Human Mesenchymal Stromal Cells (hMSCs) are a promising source for cell-based therapies. Yet, transition to phase III and IV clinical trials is remarkably slow. To mitigate donor variabilities and to obtain robust and valid clinical data, we aimed first to develop a manufacturing concept balancing large-scale production of pooled hMSCs in a minimal expansion period, and second to test them for key manufacture and efficacy indicators in the clinically highly relevant indication wound healing. Our novel clinical-scale manufacturing concept is comprised of six single donor hMSCs master cell banks that are pooled to a working cell bank from which an extrapolated number of 70,000 clinical doses of 1x106 hMSCs/cm2 wound size can be manufactured within only three passages. The pooled hMSC batches showed high stability of key manufacture indicators such as morphology, immune phenotype, proliferation, scratch wound healing, chemotactic migration and angiogenic support. Repeated topical hMSCs administration significantly accelerated the wound healing in a diabetic rat model by delivering a defined growth factor cargo (specifically BDNF, EGF, G-CSF, HGF, IL-1α, IL-6, LIF, osteopontin, VEGF-A, FGF-2, TGF-ß, PGE-2 and IDO after priming) at the specific stages of wound repair, namely inflammation, proliferation and remodeling. Specifically, the hMSCs mediated epidermal and dermal maturation and collagen formation, improved vascularization, and promoted cell infiltration. Kinetic analyses revealed transient presence of hMSCs until day (d)4, and the dynamic recruitment of macrophages infiltrating from the wound edges (d3) and basis (d9), eventually progressing to the apical wound on d11. In the wounds, the hMSCs mediated M2-like macrophage polarization starting at d4, peaking at d9 and then decreasing to d11. Our study establishes a standardized, scalable and pooled hMSC therapeutic, delivering a defined cargo of trophic factors, which is efficacious in diabetic wound healing by improving vascularization and dynamic recruitment of M2-like macrophages. This decision-making study now enables the validation of pooled hMSCs as treatment for impaired wound healing in large randomized clinical trials.


Assuntos
Diabetes Mellitus Experimental , Células-Tronco Mesenquimais , Animais , Medula Óssea , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Humanos , Macrófagos , Células-Tronco Mesenquimais/metabolismo , Neovascularização Patológica/metabolismo , Ratos , Cicatrização
7.
Stem Cell Res Ther ; 13(1): 7, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012660

RESUMO

BACKGROUND: Muscular dystrophies (MDs) are inherited diseases in which a dysregulation of the immune response exacerbates disease severity and are characterized by infiltration of various immune cell types leading to muscle inflammation, fiber necrosis and fibrosis. Immunosuppressive properties have been attributed to mesenchymal stem cells (MSCs) that regulate the phenotype and function of different immune cells. However, such properties were poorly considered until now for adult stem cells with myogenic potential and advanced as possible therapeutic candidates for MDs. In the present study, we investigated the immunoregulatory potential of human MuStem (hMuStem) cells, for which we previously demonstrated that they can survive in injured muscle and robustly counteract adverse tissue remodeling. METHODS: The impact of hMuStem cells or their secretome on the proliferative and phenotypic properties of T-cells was explored by co-culture experiments with either peripheral blood mononucleated cells or CD3-sorted T-cells. A comparative study was produced with the bone marrow (BM)-MSCs. The expression profile of immune cell-related markers on hMuStem cells was determined by flow cytometry while their secretory profile was examined by ELISA assays. Finally, the paracrine and cell contact-dependent effects of hMuStem cells on the T-cell-mediated cytotoxic response were analyzed through IFN-γ expression and lysis activity. RESULTS: Here, we show that hMuStem cells have an immunosuppressive phenotype and can inhibit the proliferation and the cytotoxic response of T-cells as well as promote the generation of regulatory T-cells through direct contact and via soluble factors. These effects are associated, in part, with the production of mediators including heme-oxygenase-1, leukemia inhibitory factor and intracellular cell adhesion molecule-1, all of which are produced at significantly higher levels by hMuStem cells than BM-MSCs. While the production of prostaglandin E2 is involved in the suppression of T-cell proliferation by both hMuStem cells and BM-MSCs, the participation of inducible nitric oxide synthase activity appears to be specific to hMuStem cell-mediated one. CONCLUSIONS: Together, our findings demonstrate that hMuStem cells are potent immunoregulatory cells. Combined with their myogenic potential, the attribution of these properties reinforces the positioning of hMuStem cells as candidate therapeutic agents for the treatment of MDs.


Assuntos
Células-Tronco Adultas , Células-Tronco Mesenquimais , Proliferação de Células , Técnicas de Cocultura , Humanos , Ativação Linfocitária
8.
BMC Genomics ; 12: 461, 2011 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-21943323

RESUMO

BACKGROUND: Adipogenesis is the developmental process by which mesenchymal stem cells (MSC) differentiate into pre-adipocytes and adipocytes. The aim of the study was to analyze the developmental strategies of human bone marrow MSC developing into adipocytes over a defined time scale. Here we were particularly interested in differentially expressed transcription factors and biochemical pathways. We studied genome-wide gene expression profiling of human MSC based on an adipogenic differentiation experiment with five different time points (day 0, 1, 3, 7 and 17), which was designed and performed in reference to human fat tissue. For data processing and selection of adipogenic candidate genes, we used the online database SiPaGene for Affymetrix microarray expression data. RESULTS: The mesenchymal stem cell character of human MSC cultures was proven by cell morphology, by flow cytometry analysis and by the ability of the cells to develop into the osteo-, chondro- and adipogenic lineage. Moreover we were able to detect 184 adipogenic candidate genes (85 with increased, 99 with decreased expression) that were differentially expressed during adipogenic development of MSC and/or between MSC and fat tissue in a highly significant way (p < 0.00001). Subsequently, groups of up- or down-regulated genes were formed and analyzed with biochemical and cluster tools. Among the 184 genes, we identified already known transcription factors such as PPARG, C/EBPA and RTXA. Several of the genes could be linked to corresponding biochemical pathways like the adipocyte differentiation, adipocytokine signalling, and lipogenesis pathways. We also identified new candidate genes possibly related to adipogenesis, such as SCARA5, coding for a receptor with a putative transmembrane domain and a collagen-like domain, and MRAP, encoding an endoplasmatic reticulum protein. CONCLUSIONS: Comparing differential gene expression profiles of human MSC and native fat cells or tissue allowed us to establish a comprehensive differential kinetic gene expression network of adipogenesis. Based on this, we identified known and unknown genes and biochemical pathways that may be relevant for adipogenic differentiation. Our results encourage further and more focused studies on the functional relevance of particular adipogenic candidate genes.


Assuntos
Adipogenia/genética , Células da Medula Óssea/metabolismo , Perfilação da Expressão Gênica/métodos , Células-Tronco Mesenquimais/metabolismo , Células da Medula Óssea/citologia , Análise por Conglomerados , Citometria de Fluxo , Humanos , Células-Tronco Mesenquimais/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Fatores de Transcrição/genética , Transcriptoma
9.
J Transl Med ; 9: 63, 2011 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-21575188

RESUMO

BACKGROUND: Adoptive cell therapy (ACT) has emerged as an effective treatment for patients with metastatic melanoma. However, there are several logistical and safety concerns associated with large-scale ex vivo expansion of tumour-specific T lymphocytes for widespread availability of ACT for cancer patients. To address these problems we developed a specific compartmentalised bag allowing efficient expansion of tumour-specific T lymphocytes in an easy handling, closed system. METHODS: Starting from lymph nodes from eight melanoma patients, we performed a side-by-side comparison of Tumour-Infiltrating Lymphocytes (TIL) produced after expansion in the compartmentalised bag versus TIL produced using the standard process in plates. Proliferation yield, viability, phenotype and IFNγ secretion were comparatively studied. RESULTS: We found no differences in proliferation yield and cell viability between both TIL production systems. Moreover, each of the cell products complied with our defined release criteria before being administered to the patient. The phenotype analysis indicated that the compartmentalised bag favours the expansion of CD8+ cells. Finally, we found that TIL stimulated in bags were enriched in reactive CD8+ T cells when co-cultured with the autologous melanoma cell line. CONCLUSIONS: The stimulation of TIL with feeder cells in the specifically designed compartmentalised bag can advantageously replace the conventional protocol using plates. In particular, the higher expansion rate of reactive CD8+ T cells could have a significant impact for ACT.


Assuntos
Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Gases/metabolismo , Imunoterapia Adotiva/métodos , Linfócitos do Interstício Tumoral/patologia , Antígenos CD4/metabolismo , Antígenos CD8/metabolismo , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Técnicas de Cocultura , Humanos , Interferon gama/metabolismo , Permeabilidade
10.
Biomolecules ; 11(8)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34439748

RESUMO

Potentially toxic plasticizers are commonly added to polyvinyl chloride medical devices for transfusion in order to improve their flexibility and workability. As the plasticizers are not chemically bonded to the PVC, they can be released into labile blood products (LBPs) during storage. Ideally, LBPs would be used in laboratory studies of plasticizer migration from the medical device. However, short supply (i.e., limited stocks of human blood in collection centres) has prompted the development of specific simulants for each type of LBP in the evaluation of new transfusion devices. We performed a Delphi study with a multidisciplinary panel of 24 experts. In the first (qualitative) phase, the panel developed consensus definitions of the specification criteria to be met by each migration simulant. Next, we reviewed the literature on techniques for simulating the migration of plasticizers into LBPs. A questionnaire was elaborated and sent out to the experts, and the replies were synthesized in order to obtain a consensus. The qualitative study established specifications for each biological matrix (whole blood, red blood cell concentrate, plasma, and platelet concentrate) and defined the criteria required for a suitable LBP simulant. Ten criteria were suggested: physical and chemical characteristics, opacity, form, stability, composition, ability to mimic a particular clinical situation, ease and safety of use, a simulant-plastic interaction correlated with blood, and compatibility with analytical methods. The questionnaire data revealed a consensus on the use of natural products (such as pig's blood) to mimic the four LBPs. Opinions diverged with regard to synthetic products. However, an isotonic solution and a rheological property modifier were considered to be of value in the design of synthetic simulants. Consensus reached by the Delphi group could be used as a database for the development of simulants used to assess the migration of plasticizers from PVC bags into LBPs.


Assuntos
Células Sanguíneas/citologia , Preservação de Sangue/instrumentação , Plastificantes/química , Bancos de Sangue , Plaquetas/citologia , Preservação de Sangue/métodos , Transfusão de Sangue/instrumentação , Transfusão de Sangue/métodos , Técnica Delphi , Eritrócitos/citologia , Hematologia/normas , Humanos , Concentração de Íons de Hidrogênio , Comunicação Interdisciplinar , Teste de Materiais , Plasma/citologia , Cloreto de Polivinila/química , Propriedades de Superfície , Inquéritos e Questionários , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA