Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 119(2): 224-236, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36579614

RESUMO

Tuberculosis remains a global health threat with high morbidity. Dendritic cells (DCs) participate in the acute and chronic inflammatory responses to Mycobacterium tuberculosis (Mtb) by directing the adaptive immune response and are present in lung granulomas. In macrophages, the interaction of lipid droplets (LDs) with mycobacteria-containing phagosomes is central to host-pathogen interactions. However, the data available for DCs are still a matter of debate. Here, we reported that bone marrow-derived DCs (BMDCs) were susceptible to Mtb infection and replication at similar rate to macrophages. Unlike macrophages, the analysis of gene expression showed that Mtb infection induced a delayed increase in lipid droplet-related genes and proinflammatory response. Hence, LD accumulation has been observed by high-content imaging in late periods. Infection of BMDCs with killed H37Rv demonstrated that LD accumulation depends on Mtb viability. Moreover, infection with the attenuated strains H37Ra and Mycobacterium bovis-BCG induced only an early transient increase in LDs, whereas virulent Mtb also induced delayed LD accumulation. In addition, infection with the BCG strain with the reintroduced virulence RD1 locus induced higher LD accumulation and bacterial replication when compared to parental BCG. Collectively, our data suggest that delayed LD accumulation in DCs is dependent on mycobacterial viability and virulence.


Assuntos
Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Gotículas Lipídicas , Virulência , Viabilidade Microbiana , Vacina BCG/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/microbiologia
2.
EMBO Rep ; 19(1): 29-42, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29141986

RESUMO

The interaction of Mycobacterium tuberculosis (Mtb) with pulmonary epithelial cells is critical for early stages of bacillus colonization and during the progression of tuberculosis. Entry of Mtb into epithelial cells has been shown to depend on F-actin polymerization, though the molecular mechanisms are still unclear. Here, we demonstrate that mycobacterial uptake into epithelial cells requires rearrangements of the actin cytoskeleton, which are regulated by ADP-ribosylation factor 1 (Arf1) and phospholipase D1 (PLD1), and is dependent on the M3 muscarinic receptor (M3R). We show that this pathway is controlled by Arf GTPase-activating protein 1 (ArfGAP1), as its silencing has an impact on actin cytoskeleton reorganization leading to uncontrolled uptake and replication of Mtb. Furthermore, we provide evidence that this pathway is critical for mycobacterial entry, while the cellular infection with other pathogens, such as Shigella flexneri and Yersinia pseudotuberculosis, is not affected. Altogether, these results reveal how cortical actin plays the role of a barrier to prevent mycobacterial entry into epithelial cells and indicate a novel role for ArfGAP1 as a restriction factor of host-pathogen interactions.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/genética , Proteínas Ativadoras de GTPase/genética , Interações Hospedeiro-Patógeno , Mycobacterium tuberculosis/patogenicidade , Alvéolos Pulmonares/metabolismo , Células A549 , Fator 1 de Ribosilação do ADP/genética , Fator 1 de Ribosilação do ADP/metabolismo , Citoesqueleto de Actina/microbiologia , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica , Humanos , Mycobacterium tuberculosis/fisiologia , Fosfolipase D/genética , Fosfolipase D/metabolismo , Polimerização , Alvéolos Pulmonares/microbiologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Shigella flexneri/fisiologia , Transdução de Sinais , Especificidade da Espécie , Yersinia pseudotuberculosis/fisiologia
3.
Bioorg Med Chem ; 28(23): 115797, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33075682

RESUMO

In order to identify anti-tubercular agents with a novel scaffold, commercial libraries of small organic compounds were screened against a fluorescent strain of Mycobacterium tuberculosis H37Rv, using a dual phenotypic assay. Compounds were assessed against bacteria replicating in broth medium, as well as inside macrophages, and thienothiazolocarboxamide (TTCA) scaffold was identified as hit in both assays, with submicromolar inhibitory concentrations. Derivatives of TTCA were further synthesized and evaluated for their inhibitory effects on M.tuberculosis H37Rv. In the present study we report the structure-activity relationship of these TTCA derivatives. Compounds 28, 32 and 42 displayed good anti-tubercular activities, as well as favorable ADME and PK properties. Compound 42 exhibited excellent oral bioavailability in mice with high distribution to lungs, within 1 h. It was found to be efficacious in a dose dependent manner in a murine model of M. tuberculosis infection. Hence, compound 42 is now under evaluation as a potential lead candidate for treatment of tuberculosis.


Assuntos
Amidas/química , Antituberculosos/química , Tiazóis/química , Amidas/farmacocinética , Amidas/farmacologia , Amidas/uso terapêutico , Animais , Antituberculosos/farmacocinética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Estabilidade de Medicamentos , Feminino , Meia-Vida , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Microssomos/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Relação Estrutura-Atividade , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Tuberculose/patologia
4.
Mol Microbiol ; 103(1): 13-25, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27677649

RESUMO

There is an urgent need to discover new anti-tubercular agents with novel mechanisms of action in order to tackle the scourge of drug-resistant tuberculosis. Here, we report the identification of such a molecule - an AminoPYrimidine-Sulfonamide (APYS1) that has potent, bactericidal activity against M. tuberculosis. Mutations in APYS1-resistant M. tuberculosis mapped exclusively to wag31, a gene that encodes a scaffolding protein thought to orchestrate cell elongation. Recombineering confirmed that a Gln201Arg mutation in Wag31 was sufficient to cause resistance to APYS1, however, neither overexpression nor conditional depletion of wag31 impacted M. tuberculosis susceptibility to this compound. In contrast, expression of the wildtype allele of wag31 in APYS1-resistant M. tuberculosis was dominant and restored susceptibility to APYS1 to wildtype levels. Time-lapse imaging and scanning electron microscopy revealed that APYS1 caused gross malformation of the old pole of M. tuberculosis, with eventual lysis. These effects resembled the morphological changes observed following transcriptional silencing of wag31 in M. tuberculosis. These data show that Wag31 is likely not the direct target of APYS1, but the striking phenotypic similarity between APYS1 exposure and genetic depletion of Wag31 in M. tuberculosis suggests that APYS1 might indirectly affect Wag31 through an as yet unknown mechanism.


Assuntos
Antituberculosos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Pirimidinas/farmacocinética , Antibacterianos/farmacocinética , Crescimento Celular , Descoberta de Drogas/métodos , Regulação Bacteriana da Expressão Gênica/genética , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo , Homologia de Sequência de Aminoácidos , Sulfonamidas/metabolismo , Sulfonamidas/farmacocinética , Imagem com Lapso de Tempo
5.
Bioorg Chem ; 81: 414-424, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30212765

RESUMO

A set of 19 oxadiazolone (OX) derivatives have been investigated for their antimycobacterial activity against two pathogenic slow-growing mycobacteria, Mycobacterium marinum and Mycobacterium bovis BCG, and the avirulent Mycobacterium tuberculosis (M. tb) mc26230. The encouraging minimal inhibitory concentrations (MIC) values obtained prompted us to test them against virulent M. tb H37Rv growth either in broth medium or inside macrophages. The OX compounds displayed a diversity of action and were found to act either on extracellular M. tb growth only with moderated MIC50, or both intracellularly on infected macrophages as well as extracellularly on bacterial growth. Of interest, all OX derivatives exhibited very low toxicity towards host macrophages. Among the six potential OXs identified, HPOX, a selective inhibitor of extracellular M. tb growth, was selected and further used in a competitive labelling/enrichment assay against the activity-based probe Desthiobiotin-FP, in order to identify its putative target(s). This approach, combined with mass spectrometry, identified 18 potential candidates, all being serine or cysteine enzymes involved in M. tb lipid metabolism and/or in cell wall biosynthesis. Among them, Ag85A, CaeA, TesA, KasA and MetA have been reported as essential for in vitro growth of M. tb and/or its survival and persistence inside macrophages. Overall, our findings support the assumption that OX derivatives may represent a novel class of multi-target inhibitors leading to the arrest of M. tb growth through a cumulative inhibition of a large number of Ser- and Cys-containing enzymes involved in various important physiological processes.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Oxidiazóis/química , Oxidiazóis/farmacologia , Animais , Desenho de Fármacos , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/crescimento & desenvolvimento , Células RAW 264.7 , Tuberculose/tratamento farmacológico
6.
Artigo em Inglês | MEDLINE | ID: mdl-28416541

RESUMO

New and improved treatments for tuberculosis (TB) are urgently needed. Recently, it has been demonstrated that verapamil, an efflux inhibitor, can reduce bacterial drug tolerance caused by efflux pump activity when administered in combination with available antituberculosis agents. The aim of this study was to evaluate the effectiveness of verapamil in combination with the antituberculosis drug candidate Q203, which has recently been developed and is currently under clinical trials as a potential antituberculosis agent. We evaluated changes in Q203 activity in the presence and absence of verapamil in vitro using the resazurin microplate assay and ex vivo using a microscopy-based phenotypic assay for the quantification of intracellular replicating mycobacteria. Verapamil increased the potency of Q203 against Mycobacterium tuberculosis both in vitro and ex vivo, indicating that efflux pumps are associated with the activity of Q203. Other efflux pump inhibitors also displayed an increase in Q203 potency, strengthening this hypothesis. Therefore, the combination of verapamil and Q203 may be a promising combinatorial strategy for anti-TB treatment to accelerate the elimination of M. tuberculosis.


Assuntos
Mycobacterium tuberculosis/patogenicidade , Tuberculose/metabolismo , Antituberculosos/farmacologia , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Imidazóis/farmacologia , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Oxazinas/farmacologia , Piperidinas/farmacologia , Piridinas/farmacologia , Verapamil/farmacologia , Xantenos/farmacologia
7.
Cytometry A ; 91(10): 983-994, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28544095

RESUMO

Tuberculosis (TB) is still a major global threat, killing more than one million persons each year. With the constant increase of Mycobacterium tuberculosis strains resistant to first- and second-line drugs, there is an urgent need for the development of new drugs to control the propagation of TB. Although screenings of small molecules on axenic M. tuberculosis cultures were successful for the identification of novel putative anti-TB drugs, new drugs in the development pipeline remains scarce. Host-directed therapy may represent an alternative for drug development against TB. Indeed, M. tuberculosis has multiple specific interactions within host phagocytes, which may be targeted by small molecules. In order to enable drug discovery strategies against microbes residing within host macrophages, we developed multiple fluorescence-based HT/CS phenotypic assays monitoring the intracellular replication of M. tuberculosis as well as its intracellular trafficking. What we propose here is a population-based, multi-parametric analysis pipeline that can be used to monitor the intracellular fate of M. tuberculosis and the dynamics of cellular events such as phagosomal maturation (acidification and permeabilization), zinc poisoning system or lipid body accumulation. Such analysis allows the quantification of biological events considering the host-pathogen interplay and may thus be derived to other intracellular pathogens. © 2017 International Society for Advancement of Cytometry.


Assuntos
Mycobacterium tuberculosis/metabolismo , Tuberculose/microbiologia , Animais , Antituberculosos/farmacologia , Bioensaio/métodos , Células Cultivadas , Descoberta de Drogas/métodos , Fluorescência , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Tuberculose/tratamento farmacológico
8.
Org Biomol Chem ; 14(7): 2318-26, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26806381

RESUMO

With the ever-increasing instances of resistance to frontline TB drugs there is the need to develop novel strategies to fight the worldwide TB epidemic. Boosting the effect of the existing second-line antibiotic ethionamide by inhibiting the mycobacterial transcriptional repressor protein EthR is an attractive therapeutic strategy. Herein we report the use of a fragment based drug discovery approach for the structure-guided systematic merging of two fragment molecules, each binding twice to the hydrophobic cavity of EthR from M. tuberculosis. These together fill the entire binding pocket of EthR. We elaborated these fragment hits and developed small molecule inhibitors which have a 100-fold improvement of potency in vitro over the initial fragments.


Assuntos
Etionamida/química , Mycobacterium tuberculosis/efeitos dos fármacos , Proteínas Repressoras/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Cristalografia por Raios X , Etionamida/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Concentração Inibidora 50 , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
9.
Biochim Biophys Acta ; 1821(11): 1379-85, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22835523

RESUMO

Methyl arachidonyl fluorophosphonate (MAFP) is a known inhibitor of cytosolic phospholipase A2 and some other serine enzymes. MAFP was found here to be an irreversible inhibitor of human pancreatic lipase-related protein 2 (HPLRP2), an enzyme displaying lipase, phospholipase A1 and galactolipase activities. In the presence of MAFP, mass spectrometry analysis of HPLRP2 revealed a mass increase of 351Da, suggesting a covalent binding of MAFP to the active site serine residue. When HPLRP2 was pre-incubated with MAFP before measuring residual activity, a direct inhibition of HPLRP2 occurred, confirming that HPLRP2 has an active site freely accessible to solvent and differs from most lipases in solution. HPLRP2 activities on tributyrin (TC4), phosphatidylcholine (PC) and monogalactosyl dioctanoylglycerol (C8-MGDG) were equally inhibited under these conditions. Bile salts were not required to trigger the inhibition, but they significantly increased the rate of HPLRP2 inhibition, probably because of MAFP micellar solubilization. Since HPLRP2 is active on various substrates that self-organize differently in the presence of water, HPLRP2 inhibition by MAFP was tested in the presence of these substrates after adding MAFP in the course of the lipolysis reaction. In this case, the rates of inhibition of lipase, phospholipase A1 and galactolipase activities were not equivalent (triglycerides>PC>MGDG), suggesting different enzyme/inhibitor partitioning between the aqueous phase and lipid aggregates. The inhibition by MAFP of a well identified phospholipase A1 (HPLRP2), present in pancreatic juice and also in human monocytes, indicates that MAFP cannot be used for discriminating phospholipase A2 from A1 activities at the cellular level.


Assuntos
Ácidos Araquidônicos/farmacologia , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Lipase/antagonistas & inibidores , Organofosfonatos/farmacologia , Fosfolipases A1/antagonistas & inibidores , Hidrolases de Éster Carboxílico/metabolismo , Humanos , Lipase/metabolismo , Lipólise , Fosfolipases A1/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
ACS Sens ; 7(9): 2556-2566, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36001874

RESUMO

Luminometer and imaging systems are used to detect and quantify low light produced by a broad range of bioluminescent proteins. Despite their everyday use in research, such instruments are costly and lack the flexibility to accommodate the variety of bioluminescence experiment formats that may require top or bottom signal acquisition, high or medium sensitivity, or multiple wavelength detection. To address the growing need for versatile technologies, we developed a highly customizable bioluminescence imager called Biolum' RGB that uses a consumer color digital camera with a high-aperture lens mounted at the bottom or top of a 3D-printed dark chamber and can quantify bioluminescence emission from cells grown in 384-well microplates and Petri dishes. Taking advantage of RGB detectors, Biolum' RGB can distinguish spectral signatures from various bioluminescence probes and quantify bioluminescence resonant energy transfer occurring during protein-protein interaction events. Although Biolum' RGB can be used with any smartphone, in particular for low bioluminescence signals, we recommend the use of recent digital cameras which offer better sensitivity and high signal/noise ratio. Altogether, Biolum' RGB combines the benefits of a plate reader and imager while providing better image resolution and faster acquisition speed, and as such, it offers an exciting alternative for any laboratory looking for a versatile, low-cost bioluminescence imaging instrument.


Assuntos
Diagnóstico por Imagem , Smartphone , Proteínas Luminescentes/metabolismo
11.
Sci Rep ; 12(1): 9591, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688860

RESUMO

Drug resistance in tuberculosis is exacerbating the threat this disease is posing to human beings. Antibiotics that were once effective against the causative agent, Mycobacterium tuberculosis (Mtb), are now no longer usable against multi- and extensively drug-resistant strains of this pathogen. To address this issue, new drug combinations and novel methods for targeted drug delivery could be of considerable value. In addition, studies have shown that the use of the antidepressant drug fluoxetine, a serotonin reuptake inhibitor, can be useful in the treatment of infectious diseases, including bacterial infections. In this study, an isoniazid and fluoxetine-conjugated multi-walled carbon nanotube nanofluid were designed to increase drug delivery efficiency alongside eliminating drug resistance in vitro. The prepared nanofluid was tested against Mtb. Expression levels of inhA and katG mRNAs were detected by Real-time PCR. ELISA was applied to measure levels of cytokine secretion (TNF-α, and IL-6) from infected macrophages treated with the nano delivery system. The results showed that these nano-drug delivery systems are effective for fluoxetine at far lower doses than for free drugs. Fluoxetine also has an additive effect on the effect of isoniazid, and their concomitant use in the delivery system can have significant effects in treating infection of all clinical strains of Mtb. In addition, it was found that the expression of isoniazid resistance genes, including inhA, katG, and the secretion of cytokines TNFα and IL6 under the influence of this drug delivery system is well regulated. It was shown that the drug conjugation can improve the antibacterial activity of them in all strains and these two drugs have an additive effect on each other both in free and conjugated forms. This nano-drug delivery method combined with host targeted molecules could be a game-changer in the development of a new generation of antibiotics that have high therapeutic efficiencies, low side effects, and the potential to overcome the problem of drug resistance.


Assuntos
Mycobacterium tuberculosis , Nanopartículas , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , Fluoxetina/farmacologia , Humanos , Isoniazida/farmacologia , Isoniazida/uso terapêutico , Testes de Sensibilidade Microbiana , Mutação , Nanopartículas/uso terapêutico , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
12.
Sci Rep ; 12(1): 5635, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379873

RESUMO

Para-aminosalicylic acid (PAS) is an antibiotic that was largely used for the multi-therapy of tuberculosis in the twentieth century. To try to overcome the inconvenience of its low efficacy and poor tolerance, we searched for novel chemical entities able to synergize with PAS using a combination screening against growing axenic Mycobacterium tuberculosis. The screening was performed at a sub-inhibitory concentration of PAS on a library of about 100,000 small molecules. Selected hit compounds were analyzed by dose-response and further probed with an intracellular macrophage assay. Scaffolds with potential additive effect with PAS are reported, opening interesting prospects for mechanism of action studies. We also report here evidence of a yet unknown bio-activation mechanism, involving activation of pyrido[1,2-a]pyrimidin-4-one (PP) derivatives through the Rv3087 protein.


Assuntos
Ácido Aminossalicílico , Mycobacterium tuberculosis , Tuberculose dos Linfonodos , Ácido Aminossalicílico/metabolismo , Ácido Aminossalicílico/farmacologia , Antituberculosos/química , Humanos
13.
Sci Transl Med ; 14(643): eaaz6280, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35507672

RESUMO

The sensitivity of Mycobacterium tuberculosis, the pathogen that causes tuberculosis (TB), to antibiotic prodrugs is dependent on the efficacy of the activation process that transforms the prodrugs into their active antibacterial moieties. Various oxidases of M. tuberculosis have the potential to activate the prodrug ethionamide. Here, we used medicinal chemistry coupled with a phenotypic assay to select the N-acylated 4-phenylpiperidine compound series. The lead compound, SMARt751, interacted with the transcriptional regulator VirS of M. tuberculosis, which regulates the mymA operon encoding a monooxygenase that activates ethionamide. SMARt751 boosted the efficacy of ethionamide in vitro and in mouse models of acute and chronic TB. SMARt751 also restored full efficacy of ethionamide in mice infected with M. tuberculosis strains carrying mutations in the ethA gene, which cause ethionamide resistance in the clinic. SMARt751 was shown to be safe in tests conducted in vitro and in vivo. A model extrapolating animal pharmacokinetic and pharmacodynamic parameters to humans predicted that as little as 25 mg of SMARt751 daily would allow a fourfold reduction in the dose of ethionamide administered while retaining the same efficacy and reducing side effects.


Assuntos
Mycobacterium tuberculosis , Pró-Fármacos , Tuberculose , Animais , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Etionamida/química , Etionamida/farmacologia , Etionamida/uso terapêutico , Camundongos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Tuberculose/tratamento farmacológico
14.
FASEB J ; 24(6): 1893-903, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20103719

RESUMO

Cutinases are extracellular enzymes that are able to degrade cutin, a polyester protecting plant leaves and many kinds of lipids. Although cutinases are mainly found in phytopathogenic fungi or bacteria, 7 genes related to the cutinase family have been predicted in the genome of Mycobacterium tuberculosis. These genes may encode proteins that are involved in the complex lipid metabolism of the bacterium. Here, we report on the biochemical characterization of two secreted proteins of M. tuberculosis, Rv1984c and Rv3452, belonging to the cutinase family. Although their amino acid sequence shows 50% identity with that of the well-characterized cutinase from Fusarium solani pisi, and a high level of homology has been found to exist between these two enzymes, they show distinct substrate specificities. Rv1984c preferentially hydrolyzes medium-chain carboxylic esters and monoacylglycerols, whereas Rv3452 behaves like a phospholipase A(2), and it is able to induce macrophage lysis. The tetrahydrolipstatin inhibitor, a specific lipase inhibitor, abolishes the activity of both enzymes. Site-directed mutagenesis was performed to identify the catalytic triad of Rv1984c. Structural models for Rv1984c and Rv3452 were built, based on the crystal structure of F. solani cutinase, with a view to investigating the contribution of specific residues to the substrate specificity. Our findings open new prospects for investigating the physiological roles of cutinase-like proteins in the lipid metabolism and virulence of M. tuberculosis.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Ésteres/metabolismo , Lipólise/fisiologia , Mycobacterium tuberculosis/enzimologia , Fosfolipases A2/metabolismo , Sequência de Aminoácidos , Animais , Hidrolases de Éster Carboxílico/genética , Catálise , Inibidores Enzimáticos/farmacologia , Lactonas/farmacologia , Lipase/antagonistas & inibidores , Lipólise/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Orlistate , Fosfolipases A2/genética , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
15.
Pharm Res ; 28(8): 1831-42, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21234659

RESUMO

Lipase inhibitors are the main anti-obesity drugs prescribed these days, but the complexity of their mechanism of action is making it difficult to develop new molecules for this purpose. The efficacy of these drugs is known to depend closely on the physico-chemistry of the lipid-water interfaces involved and on the unconventional behavior of the lipases which are their target enzymes. The lipolysis reaction which occurs at an oil-water interface involves complex equilibria between adsorption-desorption processes, conformational changes and catalytic mechanisms. In this context, surfactants can induce significant changes in the partitioning of the enzyme and the inhibitor between the water phase and lipid-water interfaces. Surfactants can be found at the oil-water interface where they compete with lipases for adsorption, but also in solution in the form of micellar aggregates and monomers that may interact with hydrophobic parts of lipases in solution. These various interactions, combined with the emulsification and dispersion of insoluble substrates and inhibitors, can either promote or decrease the activity and the inhibition of lipases. Here, we review some examples of the various effects of surfactants on lipase structure, activity and inhibition, which show how complex the various equilibria involved in the lipolysis reaction tend to be.


Assuntos
Lipase/química , Lipase/metabolismo , Tensoativos/farmacologia , Adsorção , Animais , Fármacos Antiobesidade/farmacologia , Humanos , Lipase/antagonistas & inibidores , Lipólise/efeitos dos fármacos , Tensoativos/química
16.
PLoS One ; 16(5): e0252488, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34048502

RESUMO

Multi-well plates are convenient tools to work with in biology experiments, as they allow the probing of multiple conditions in a compact and economic way. Although both free and commercial software exist for the definition of plate layout and management of plate data, we were looking for a more flexible solution, available anywhere, free from download, installation and licensing constraints. In this context, we created PlateEditor, a free web-based, client-side application allowing rapid creation of even complex layouts, including dose-response curves and multiple combination experiments for any plate format up to 1536 wells. PlateEditor also provides heatmap visualization and aggregation features to speed-up the process of data analysis and formatting for export in other application. Written in pure JavaScript, it is fully open-source, can be integrated in various workflows and has the potential to be extended with more functionalities in the future.


Assuntos
Análise em Microsséries/métodos , Software , Internet
17.
J Am Chem Soc ; 132(10): 3582-93, 2010 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-20170120

RESUMO

We now report that a dynamic combinatorial selection approach can quantitatively provide, from trivial building blocks, an architecturally complex organic material, in which carbon dioxide is reversibly but covalently incorporated as a guest with a mass content of 20%. Solid-state analyses combined with covalent disconnection and quantization of the liberated components allowed identification of a three-component monomeric unit repeated within a range of assembled oligomeric adducts whose repartition and binding capacity can be finely tuned through the starting stoichiometries. The self-assembly of these architectures occurs through the simultaneous creation of more than 25 covalent bonds per molecular entity. It appears that the thermodynamic selection is directed by the packing efficiency of these adducts, explaining the spectacular building block discrimination between homologues differing by one carbon unit. This selectivity, combined with the reversible nature of the system, provided pure molecular building blocks after a simple chemical disconnection, promoting CO(2) as a green auxiliary to purify polyaldehyde or polyamine from mixtures of homologous structures. Moreover, the gas template could be expelled as a pure compound under thermodynamic control. This cooperative desorption process yielded back the initial libraries of high molecular diversity with a promising reduction of the energetic costs of capture and recycling.

18.
Stem Cell Reports ; 13(6): 980-991, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31680058

RESUMO

A major limitation in anti-tuberculosis drug screening is the lack of reliable and scalable models for homogeneous human primary macrophage cells of non-cancer origin. Here we report a modified protocol for generating homogeneous populations of macrophage-like cells from human embryonic stem cells. The induced macrophages, referred to as iMACs, presented similar transcriptomic profiles and characteristic immunological features of classical macrophages and were permissive to viral and bacterial infection, in particular Mycobacterium tuberculosis (Mtb). More importantly, iMAC production was amenable to scale up. To evaluate iMAC efficiency in high-throughput anti-tuberculosis drug screening, we performed a phenotypic screening against intracellular Mtb, involving a library of 3,716 compounds that included FDA-approved drugs and other bioactive compounds. Our primary screen identified 120 hits, which were validated in a secondary screen by dose-intracellular and -extracellular Mtb assays. Our confirmatory studies identified a novel anti-Mtb compound, 10-DEBC, also showing activity against drug-resistant strains.


Assuntos
Antituberculosos/farmacologia , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Células-Tronco Embrionárias Humanas/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Fagocitose/imunologia , Bibliotecas de Moléculas Pequenas
19.
Front Immunol ; 9: 438, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593716

RESUMO

Lung alveolar macrophages (AMs) are in the first line of immune defense against respiratory pathogens and play key roles in the pathogenesis of Mycobacterium tuberculosis (Mtb) in humans. Nevertheless, AMs are available only in limited amounts for in vitro studies, which hamper the detailed molecular understanding of host-Mtb interactions in these macrophages. The recent establishment of the self-renewing and primary Max Planck Institute (MPI) cells, functionally very close to lung AMs, opens unique opportunities for in vitro studies of host-pathogen interactions in respiratory diseases. Here, we investigated the suitability of MPI cells as a host cell system for Mtb infection. Bacterial, cellular, and innate immune features of MPI cells infected with Mtb were characterized. Live bacteria were readily internalized and efficiently replicated in MPI cells, similarly to primary murine macrophages and other cell lines. MPI cells were also suitable for the determination of anti-tuberculosis (TB) drug activity. The primary innate immune response of MPI cells to live Mtb showed significantly higher and earlier induction of the pro-inflammatory cytokines TNFα, interleukin 6 (IL-6), IL-1α, and IL-1ß, as compared to stimulation with heat-killed (HK) bacteria. MPI cells previously showed a lack of induction of the anti-inflammatory cytokine IL-10 to a wide range of stimuli, including HK Mtb. By contrast, we show here that live Mtb is able to induce significant amounts of IL-10 in MPI cells. Autophagy experiments using light chain 3B immunostaining, as well as LysoTracker labeling of acidic vacuoles, demonstrated that MPI cells efficiently control killed Mtb by elimination through phagolysosomes. MPI cells were also able to accumulate lipid droplets in their cytoplasm following exposure to lipoproteins. Collectively, this study establishes the MPI cells as a relevant, versatile host cell model for TB research, allowing a deeper understanding of AMs functions in this pathology.


Assuntos
Macrófagos Alveolares/fisiologia , Mycobacterium tuberculosis/fisiologia , Tuberculose/imunologia , Animais , Autofagia , Citocinas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Pulmão/patologia , Macrófagos Alveolares/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Fagossomos/metabolismo , Células THP-1
20.
Artigo em Inglês | MEDLINE | ID: mdl-29755957

RESUMO

Tuberculosis (TB) is a formidable infectious disease that remains a major cause of death worldwide today. Escalating application of genomic techniques has expedited the identification of increasing number of mutations associated with drug resistance in Mycobacterium tuberculosis. Unfortunately the prevalence of bacillary resistance becomes alarming in many parts of the world, with the daunting scenarios of multidrug-resistant tuberculosis (MDR-TB), extensively drug-resistant tuberculosis (XDR-TB) and total drug-resistant tuberculosis (TDR-TB), due to number of resistance pathways, alongside some apparently obscure ones. Recent advances in the understanding of the molecular/ genetic basis of drug targets and drug resistance mechanisms have been steadily made. Intriguing findings through whole genome sequencing and other molecular approaches facilitate the further understanding of biology and pathology of M. tuberculosis for the development of new therapeutics to meet the immense challenge of global health.


Assuntos
Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Genoma Bacteriano/genética , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA