Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Genomics ; 114(2): 110292, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35134498

RESUMO

The cetacean hindlimb skeleton massively decreased to only vestigial limb elements as cetaceans evolved from land to aquatic lifestyles; however, the molecular mechanism underlying this major morphological transition remains unclear. In this study, four deletions and specific substitutions were detected in cetacean hindlimb enhancer A (HLEA), an enhancer that can regulate Tbx4 expression in hindlimb tissues to control hindlimb development. Transcriptional activation of HLEA was significantly weaker in bottlenose dolphin than mice, and this was found to be closely associated with cetacean-specific deletions. Furthermore, deletions in cetacean HLEA might disrupt HOX and PITX1 binding sites, which are required for enhancer activation. The ancestral state of these deletions was investigated, and all four specific deletions were found to have occurred after the species diverged from their common ancestor, suggesting that the deletion occurred recently, during a secondary aquatic adaptation. Taking these findings together, we suggest that cetacean-specific sequence changes reduced the Tbx4 gene expression pattern, and consequently drove the gradual loss of hindlimb in cetaceans.


Assuntos
Fatores de Transcrição Box Pareados , Proteínas com Domínio T , Animais , Extremidades , Regulação da Expressão Gênica no Desenvolvimento , Membro Posterior/metabolismo , Camundongos , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
2.
Ecol Evol ; 12(3): e8731, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35342611

RESUMO

The epidermis plays an indispensable barrier function in animals. Some species have evolved unique epidermal structures to adapt to different environments. Aquatic and semi-aquatic mammals (cetaceans, manatees, and hippopotamus) are good models to study the evolution of epidermal structures because of their exceptionally thickened stratum spinosum, the lack of stratum granulosum, and the parakeratotic stratum corneum. This study aimed to analyze an upstream regulatory gene transient receptor potential cation channel, subfamily V, member 3 (TRPV3) of epidermal differentiation so as to explore the association between TRPV3 evolution and epidermal changes in mammals. Inactivating mutations were detected in almost all the aquatic cetaceans and several terrestrial mammals. Relaxed selective pressure was examined in the cetacean lineages with inactivated TRPV3, which might contribute to its exceptionally thickened stratum spinosum as the significant thickening of stratum spinosum in TRPV3 knock-out mouse. However, functional TRPV3 may exist in several terrestrial mammals due to their strong purifying selection, although they have "inactivating mutations." Further, for intact sequences, relaxed selective constraints on the TRPV3 gene were also detected in aquatic cetaceans, manatees, and semi-aquatic hippopotamus. However, they had intact TRPV3, suggesting that the accumulation of inactivating mutations might have lagged behind the relaxed selective pressure. The results of this study revealed the decay of TRPV3 being the genomic trace of epidermal development in aquatic and semi-aquatic mammals. They provided insights into convergently evolutionary changes of epidermal structures during the transition from the terrestrial to the aquatic environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA