Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(6): 107332, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703998

RESUMO

Recombinant insulin is a life-saving therapeutic for millions of patients affected by diabetes mellitus. Standard mutagenesis has led to insulin variants with improved control of blood glucose; for instance, the fast-acting insulin lispro contains two point mutations that suppress dimer formation and expedite absorption. However, insulins undergo irreversible denaturation, a process accelerated for the insulin monomer. Here we replace ProB29 of insulin lispro with 4R-fluoroproline, 4S-fluoroproline, and 4,4-difluoroproline. All three fluorinated lispro variants reduce blood glucose in diabetic mice, exhibit similar secondary structure as measured by CD, and rapidly dissociate from the zinc- and resorcinol-bound hexamer upon dilution. Notably, however, we find that 4S-fluorination of ProB29 delays the formation of undesired insulin fibrils that can accumulate at the injection site in vivo and can complicate insulin production and storage. These results demonstrate how subtle molecular changes achieved through non-canonical amino acid mutagenesis can improve the stability of protein therapeutics.


Assuntos
Halogenação , Insulina Lispro , Animais , Camundongos , Humanos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Glicemia/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Masculino
2.
Nucleic Acids Res ; 51(8): 4027-4042, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36971110

RESUMO

DNA in cells is organized in negatively supercoiled loops. The resulting torsional and bending strain allows DNA to adopt a surprisingly wide variety of 3-D shapes. This interplay between negative supercoiling, looping, and shape influences how DNA is stored, replicated, transcribed, repaired, and likely every other aspect of DNA activity. To understand the consequences of negative supercoiling and curvature on the hydrodynamic properties of DNA, we submitted 336 bp and 672 bp DNA minicircles to analytical ultracentrifugation (AUC). We found that the diffusion coefficient, sedimentation coefficient, and the DNA hydrodynamic radius strongly depended on circularity, loop length, and degree of negative supercoiling. Because AUC cannot ascertain shape beyond degree of non-globularity, we applied linear elasticity theory to predict DNA shapes, and combined these with hydrodynamic calculations to interpret the AUC data, with reasonable agreement between theory and experiment. These complementary approaches, together with earlier electron cryotomography data, provide a framework for understanding and predicting the effects of supercoiling on the shape and hydrodynamic properties of DNA.


Assuntos
DNA Super-Helicoidal , Hidrodinâmica , DNA , Conformação de Ácido Nucleico
3.
Nucleic Acids Res ; 51(9): 4588-4601, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36999609

RESUMO

Numerous viruses utilize essential long-range RNA-RNA genome interactions, specifically flaviviruses. Using Japanese encephalitis virus (JEV) as a model system, we computationally predicted and then biophysically validated and characterized its long-range RNA-RNA genomic interaction. Using multiple RNA computation assessment programs, we determine the primary RNA-RNA interacting site among JEV isolates and numerous related viruses. Following in vitro transcription of RNA, we provide, for the first time, characterization of an RNA-RNA interaction using size-exclusion chromatography coupled with multi-angle light scattering and analytical ultracentrifugation. Next, we demonstrate that the 5' and 3' terminal regions of JEV interact with nM affinity using microscale thermophoresis, and this affinity is significantly reduced when the conserved cyclization sequence is not present. Furthermore, we perform computational kinetic analyses validating the cyclization sequence as the primary driver of this RNA-RNA interaction. Finally, we examined the 3D structure of the interaction using small-angle X-ray scattering, revealing a flexible yet stable interaction. This pathway can be adapted and utilized to study various viral and human long-non-coding RNA-RNA interactions and determine their binding affinities, a critical pharmacological property of designing potential therapeutics.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , RNA Viral , Humanos , RNA Viral/química , RNA Longo não Codificante/química
4.
J Bacteriol ; 206(2): e0033123, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38197635

RESUMO

The Pel exopolysaccharide is one of the most mechanistically conserved and phylogenetically diverse bacterial biofilm matrix determinants. Pel is a major contributor to the structural integrity of Pseudomonas aeruginosa biofilms, and its biosynthesis is regulated by the binding of cyclic-3',5'-dimeric guanosine monophosphate (c-di-GMP) to the PelD receptor. c-di-GMP is synthesized from two molecules of guanosine triphosphate (GTP) by diguanylate cyclases with GGDEF domains and degraded by phosphodiesterases with EAL or HD-GYP domains. As the P. aeruginosa genome encodes 43 c-di-GMP metabolic enzymes, one way signaling specificity can be achieved is through direct interaction between specific enzyme-receptor pairs. Here, we show that the inner membrane hybrid GGDEF-EAL enzyme, BifA, directly interacts with PelD via its cytoplasmic HAMP, GGDEF, and EAL domains. Despite having no catalytic function, the degenerate active site motif of the BifA GGDEF domain (GGDQF) has retained the ability to bind GTP with micromolar affinity. Mutations that abolish GTP binding result in increased biofilm formation but stable global c-di-GMP levels. Our data suggest that BifA forms a dimer in solution and that GTP binding induces conformational changes in dimeric BifA that enhance the BifA-PelD interaction and stimulate its phosphodiesterase activity, thus reducing c-di-GMP levels and downregulating Pel biosynthesis. Structural comparisons between the dimeric AlphaFold2 model of BifA and the structures of other hybrid GGDEF-EAL proteins suggest that the regulation of BifA by GTP may occur through a novel mechanism.IMPORTANCEc-di-GMP is the most common cyclic dinucleotide used by bacteria to regulate phenotypes such as motility, biofilm formation, virulence factor production, cell cycle progression, and cell differentiation. While the identification and initial characterization of c-di-GMP metabolic enzymes are well established, our understanding of how these enzymes are regulated to provide signaling specificity remains understudied. Here we demonstrate that the inactive GGDEF domain of BifA binds GTP and regulates the adjacent phosphodiesterase EAL domain, ultimately downregulating Pel-dependent P. aeruginosa biofilm formation through an interaction with PelD. This discovery adds to the growing body of literature regarding how hybrid GGDEF-EAL enzymes are regulated and provides additional precedence for studying how direct interactions between c-di-GMP metabolic enzymes and effectors result in signaling specificity.


Assuntos
Proteínas de Escherichia coli , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Escherichia coli/metabolismo , GMP Cíclico/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica
5.
Nucleic Acids Res ; 50(10): 5881-5898, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35639511

RESUMO

Human Long Intergenic Noncoding RNA-p21 (LincRNA-p21) is a regulatory noncoding RNA that plays an important role in promoting apoptosis. LincRNA-p21 is also critical in down-regulating many p53 target genes through its interaction with a p53 repressive complex. The interaction between LincRNA-p21 and the repressive complex is likely dependent on the RNA tertiary structure. Previous studies have determined the two-dimensional secondary structures of the sense and antisense human LincRNA-p21 AluSx1 IRs using SHAPE. However, there were no insights into its three-dimensional structure. Therefore, we in vitro transcribed the sense and antisense regions of LincRNA-p21 AluSx1 Inverted Repeats (IRs) and performed analytical ultracentrifugation, size exclusion chromatography, light scattering, and small angle X-ray scattering (SAXS) studies. Based on these studies, we determined low-resolution, three-dimensional structures of sense and antisense LincRNA-p21. By adapting previously known two-dimensional information, we calculated their sense and antisense high-resolution models and determined that they agree with the low-resolution structures determined using SAXS. Thus, our integrated approach provides insights into the structure of LincRNA-p21 Alu IRs. Our study also offers a viable pipeline for combining the secondary structure information with biophysical and computational studies to obtain high-resolution atomistic models for long noncoding RNAs.


Assuntos
RNA Longo não Codificante , Apoptose/genética , Humanos , RNA Longo não Codificante/genética , Espalhamento a Baixo Ângulo , Proteína Supressora de Tumor p53/genética , Difração de Raios X
6.
J Am Chem Soc ; 145(9): 5285-5296, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36812303

RESUMO

The folding of collagen is a hierarchical process that starts with three peptides associating into the characteristic triple helical fold. Depending on the specific collagen in question, these triple helices then assemble into bundles reminiscent of α-helical coiled-coils. Unlike α-helices, however, the bundling of collagen triple helices is very poorly understood with almost no direct experimental data available. In order to shed light on this critical step of collagen hierarchical assembly, we have examined the collagenous region of complement component 1q. Thirteen synthetic peptides were prepared to dissect the critical regions allowing for its octadecameric self-assembly. We find that short peptides (under 40 amino acids) are able to self-assemble into specific (ABC)6 octadecamers. This requires the ABC heterotrimeric composition as the self-assembly subunit, but does not require disulfide bonds. Self-assembly into this octadecamer is aided by short noncollagenous sequences at the N-terminus, although they are not entirely required. The mechanism of self-assembly appears to begin with the very slow formation of the ABC heterotrimeric helix, followed by rapid bundling of triple helices into progressively larger oligomers, terminating in the formation of the (ABC)6 octadecamer. Cryo-electron microscopy reveals the (ABC)6 assembly as a remarkable, hollow, crown-like structure with an open channel approximately 18 Å at the narrow end and 30 Å at the wide end. This work helps to illuminate the structure and assembly mechanism of a critical protein in the innate immune system and lays the groundwork for the de novo design of higher order collagen mimetic peptide assemblies.


Assuntos
Colágeno , Peptídeos , Sequência de Aminoácidos , Microscopia Crioeletrônica , Peptídeos/química , Colágeno/química , Conformação Proteica em alfa-Hélice
7.
Chemistry ; 29(14): e202202902, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36440875

RESUMO

De novo metalloprotein design involves the construction of proteins guided by specific repeat patterns of polar and apolar residues, which, upon self-assembly, provide a suitable environment to bind metals and produce artificial metalloenzymes. While a wide range of functionalities have been realized in de novo designed metalloproteins, the functional repertoire of such constructs towards alternative energy-relevant catalysis is currently limited. Here we show the application of de novo approach to design a functional H2 evolving protein. The design involved the assembly of an amphiphilic peptide featuring cysteines at tandem a/d sites of each helix. Intriguingly, upon NiII addition, the oligomers shift from a major trimeric assembly to a mix of dimers and trimers. The metalloprotein produced H2 photocatalytically with a bell-shape pH dependence, having a maximum activity at pH 5.5. Transient absorption spectroscopy is used to determine the timescales of electron transfer as a function of pH. Selective outer sphere mutations are made to probe how the local environment tunes activity. A preferential enhancement of activity is observed via steric modulation above the NiII site, towards the N-termini, compared to below the NiII site towards the C-termini.


Assuntos
Metaloproteínas , Metaloproteínas/química , Hidrogênio , Metais , Cisteína/química , Peptídeos/química
8.
Eur Biophys J ; 52(4-5): 303-310, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36930298

RESUMO

Multi-wavelength analytical ultracentrifugation (MW-AUC) is a recently developed technique that has proven to be a promising tool to investigate mixtures of molecules containing multiple chromophores. It provides an orthogonal separation approach by distinguishing molecules based on their spectral and hydrodynamic properties. Existing software implementations do not permit the user to assess the integrity of the spectral decomposition. To address this shortcoming, we developed a new spectral decomposition residual visualization module, which monitors the accuracy of the spectral decomposition. This module assists the user by providing visual and statistical feedback from the decomposition. The software has been integrated into the UltraScan software suite and an example of a mixture containing thyroglobulin and DNA is presented for illustration purposes.


Assuntos
Hidrodinâmica , Software , Área Sob a Curva , Ultracentrifugação/métodos , DNA
9.
Eur Biophys J ; 52(4-5): 203-213, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36786920

RESUMO

A method for removing time- and radially invariant noise from sedimentation velocity and sedimentation equilibrium experiments performed in an analytical ultracentrifuge is presented. The method averages repeat radial incident light measurements as a function of the photomultiplier response at different wavelengths to remove the majority of the time-invariant noise contributions from intensity data measurements. The results of this method are compared to traditional absorbance data generated with a buffer reference and the Beckman Optima AUC data acquisition program, and with the standard UltraScan refinement workflow. The method avoids the amplification of stochastic noise inherent in the absorbance scan subtraction traditionally employed in sedimentation velocity and equilibrium data. In addition, the collection of intensity data frees up the reference channel for additional samples, doubling the capacity of the instrument. In comparison to absorbance data, the residual mean square deviation of a fitted sedimentation velocity experiment without additional noise correction by UltraScan was improved by a factor of 4.5 when using the new method. This improvement benefits sedimentation equilibrium experiments as well as analytical buoyant density equilibrium experiments where routine time-invariant noise correction calculations cannot be performed.


Assuntos
Ultracentrifugação , Ultracentrifugação/métodos
10.
Eur Biophys J ; 52(4-5): 195-201, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37526680

RESUMO

The 25th International Analytical Ultracentrifugation (AUC) Workshops and Symposium (AUC2022) took place at the University of Lethbridge in Lethbridge, Canada, in July 2022. In total, 104 attendees (Attendance Profile: 104 attendees, 69 in-person, 35 remote. Brazil 1, Canada 24, China 1, Czech Republic 2, Finland 1, France 3, Germany 22, India 3, Italy 1, Japan 4, Spain 1, Switzerland 3, Taiwan 1, United Kingdom 5, United States 32) participated in the event and presented the latest advances in the field. While the primary focus of the conference was to showcase the applications of AUC in chemical, life sciences, and nanoparticle disciplines, several presentations also integrated complementary methods, such as isothermal titration calorimetry, microscale thermophoresis, light scattering (static and dynamic), small-angle X-ray scattering, X-ray crystallography, and cryo-electron microscopy. Additionally, the delegates gained valuable hands-on experience from 20 workshops covering a broad range of applications, experimental designs and systems, and the latest software innovations in solution biophysics. The AUC2022 special volume highlights the sustained innovation, utility and relevance of AUC and related solution biophysical methods across various disciplines, including biochemistry, structural biology, synthetic polymer chemistry, carbohydrate chemistry, protein and nucleic acid characterization, nano-science, and macromolecular interactions.


Assuntos
Software , Estados Unidos , Humanos , Microscopia Crioeletrônica , Canadá , Ultracentrifugação , Brasil
11.
Eur Biophys J ; 52(4-5): 267-280, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37501021

RESUMO

To address the current lack of validated molecular standards for analytical ultracentrifugation (AUC), we investigated the suitability of double-stranded DNA molecules. We compared the hydrodynamic properties of linear and circular DNA as a function of temperature. Negatively supercoiled, nicked, and linearized 333 and 339 bp minicircles were studied. We quantified the hydrodynamic properties of these DNAs at five different temperatures, ranging from 4 to 37 °C. To enhance the precision of our measurements, each sample was globally fitted over triplicates and five rotor speeds. The exceptional stability of DNA allowed each sample to be sedimented repeatedly over the course of several months without aggregation or degradation, and with excellent reproducibility. The sedimentation and diffusion coefficients of linearized and nicked minicircle DNA demonstrated a highly homogeneous sample, and increased with temperature, indicating a decrease in friction. The sedimentation of linearized DNA was the slowest; supercoiled DNA sedimented the fastest. With increasing temperature, the supercoiled samples shifted to slower sedimentation, but sedimented faster than nicked minicircles. These results suggest that negatively supercoiled DNA becomes less compact at higher temperatures. The supercoiled minicircles, as purified from bacteria, displayed heterogeneity. Therefore, supercoiled DNA isolated from bacteria is unsuitable as a molecular standard. Linear and nicked samples are well suited as a molecular standard for AUC and have exceptional colloidal stability in an AUC cell. Even after sixty experiments at different speeds and temperatures, measured over the course of 4 months, all topological states of DNA remained colloidal, and their concentrations remained essentially unchanged.


Assuntos
DNA Super-Helicoidal , DNA , Reprodutibilidade dos Testes , DNA Circular , Ultracentrifugação
12.
Eur Biophys J ; 52(4-5): 311-320, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37014454

RESUMO

A method for characterizing and quantifying peaks formed in an analytical buoyant density equilibrium (ABDE) experiment is presented. An algorithm is derived to calculate the concentration of the density forming gradient material at every point in the cell, provided the rotor speed, temperature, meniscus position, bottom of the cell position, and the loading concentration, molar mass, and partial specific volume of the density gradient-forming material are known. In addition, a new peak fitting algorithm has been developed which allows the user to automatically quantify the peaks formed in terms of density, apparent partial specific volume, and relative abundance. The method is suitable for both ionic and non-ionic density forming materials and can be used with data generated from the UV optical system as well as the AVIV fluorescence optical system. These methods have been programmed in a new UltraScan-III module (us_abde). Examples are shown that demonstrate the application of the new module to adeno-associated viral vector preparations and proteins.


Assuntos
Algoritmos , Capsídeo , Proteínas , Peso Molecular
13.
Eur Biophys J ; 52(4-5): 445-457, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37209172

RESUMO

We report the solution behavior, oligomerization state, and structural details of myotoxin-II purified from the venom of Bothrops asper in the presence and absence of sodium dodecyl sulfate (SDS) and multiple lipids, as examined by analytical ultracentrifugation and nuclear magnetic resonance. Molecular functional and structural details of the myotoxic mechanism of group II Lys-49 phospholipase A2 homologues have been only partially elucidated so far, and conflicting observations have been reported in the literature regarding the monomeric vs. oligomeric state of these toxins in solution. We observed the formation of a stable and discrete, hexameric form of myotoxin-II, but only in the presence of small amounts of SDS. In SDS-free medium, myotoxin-II was insensitive to mass action and remained monomeric at all concentrations examined (up to 3 mg/ml, 218.2 µM). At SDS concentrations above the critical micelle concentration, only dimers and trimers were observed, and at intermediate SDS concentrations, aggregates larger than hexamers were observed. We found that the amount of SDS required to form a stable hexamer varies with protein concentration, suggesting the need for a precise stoichiometry of free SDS molecules. The discovery of a stable hexameric species in the presence of a phospholipid mimetic suggests a possible physiological role for this oligomeric form, and may shed light on the poorly understood membrane-disrupting mechanism of this myotoxic protein class.


Assuntos
Bothrops , Neurotoxinas , Animais , Neurotoxinas/química , Neurotoxinas/metabolismo , Neurotoxinas/toxicidade , Bothrops/metabolismo , Fosfolipases A2 , Espectroscopia de Ressonância Magnética , Bothrops asper
14.
Eur Biophys J ; 52(4-5): 473-481, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36939874

RESUMO

NET-1 is a key chemotropic ligand that signals commissural axon migration and change in direction. NET-1 and its receptor UNC-5B switch axon growth cones from attraction to repulsion. The biophysical properties of the NET-1 + UNC-5B complex have been poorly characterized. Using multi-wavelength-AUC by adding a fluorophore to UNC-5B, we were able to separate the UNC-5B sedimentation from NET-1. Using both multi-wavelength- and single-wavelength AUC, we investigated NET-1 and UNC-5B hydrodynamic parameters and complex formation. The sedimentation velocity experiments show that NET-1 exists in a monomer-dimer equilibrium. A close study of the association shows that NET-1 forms a pH-sensitive dimer that interacts in an anti-parallel orientation. UNC-5B can form equimolar NET-1 + UNC-5B heterocomplexes with both monomeric and dimeric NET-1.


Assuntos
Receptores de Netrina , Netrina-1 , Domínios e Motivos de Interação entre Proteínas , Animais , Ultracentrifugação , Netrina-1/química , Humanos
15.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674796

RESUMO

Staphylococcus aureus protein A (SpA) is an IgG Fc-binding virulence factor that is widely used in antibody purification and as a scaffold to develop affinity molecules. A cyclized SpA Z domain could offer exopeptidase resistance, reduced chromatographic ligand leaching after single-site endopeptidase cleavage, and enhanced IgG binding properties by preorganization, potentially reducing conformational entropy loss upon binding. In this work, a Z domain trimer (Z3) was cyclized using protein intein splicing. Interactions of cyclic and linear Z3 with human IgG1 were characterized by differential scanning fluorimetry (DSF), surface plasmon resonance (SPR), and isothermal titration calorimetry (ITC). DSF showed a 5 ℃ increase in IgG1 melting temperature when bound by each Z3 variant. SPR showed the dissociation constants of linear and cyclized Z3 with IgG1 to be 2.9 nM and 3.3 nM, respectively. ITC gave association enthalpies for linear and cyclic Z3 with IgG1 of -33.0 kcal/mol and -32.7 kcal/mol, and -T∆S of association 21.2 kcal/mol and 21.6 kcal/mol, respectively. The compact cyclic Z3 protein contains 2 functional binding sites and exhibits carboxypeptidase Y-resistance. The results suggest cyclization as a potential approach toward more stable SpA-based affinity ligands, and this analysis may advance our understanding of protein engineering for ligand and drug development.


Assuntos
Inteínas , Staphylococcus aureus , Humanos , Inteínas/genética , Ligantes , Termodinâmica , Imunoglobulina G , Calorimetria/métodos , Ligação Proteica
16.
Biochemistry ; 61(4): 252-264, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35080857

RESUMO

Aß dimers are a basic building block of many larger Aß oligomers and are among the most neurotoxic and pathologically relevant species in Alzheimer's disease. Homogeneous Aß dimers are difficult to prepare, characterize, and study because Aß forms heterogeneous mixtures of oligomers that vary in size and can rapidly aggregate into more stable fibrils. This paper introduces AßC18C33 as a disulfide-stabilized analogue of Aß42 that forms stable homogeneous dimers in lipid environments but does not aggregate to form insoluble fibrils. The AßC18C33 peptide is readily expressed in Escherichia coli and purified by reverse-phase HPLC to give ca. 8 mg of pure peptide per liter of bacterial culture. SDS-PAGE establishes that AßC18C33 forms homogeneous dimers in the membrane-like environment of SDS and that conformational stabilization of the peptide with a disulfide bond prevents the formation of heterogeneous mixtures of oligomers. Mass spectrometric (MS) studies in the presence of dodecyl maltoside (DDM) further confirm the formation of stable noncovalent dimers. Circular dichroism (CD) spectroscopy establishes that AßC18C33 adopts a ß-sheet conformation in detergent solutions and supports a model in which the intramolecular disulfide bond induces ß-hairpin folding and dimer formation in lipid environments. Thioflavin T (ThT) fluorescence assays and transmission electron microscopy (TEM) studies indicate that AßC18C33 does not undergo fibril formation in aqueous buffer solutions and demonstrate that the intramolecular disulfide bond prevents fibril formation. The recently published NMR structure of an Aß42 tetramer (PDB: 6RHY) provides a working model for the AßC18C33 dimer, in which two ß-hairpins assemble through hydrogen bonding to form a four-stranded antiparallel ß-sheet. It is anticipated that AßC18C33 will serve as a stable, nonfibrilizing, and noncovalent Aß dimer model for amyloid and Alzheimer's disease research.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Dissulfetos/metabolismo , Amiloide/química , Peptídeos beta-Amiloides/química , Dicroísmo Circular/métodos , Dissulfetos/química , Humanos , Ligação de Hidrogênio , Microscopia Eletrônica de Transmissão/métodos , Modelos Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Conformação Proteica em Folha beta
17.
Biochem Cell Biol ; 100(5): 425-436, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35926232

RESUMO

Inorganic pyrophosphatase (iPPase) is an enzyme that cleaves pyrophosphate into two phosphate molecules. This enzyme is an essential component of in vitro transcription (IVT) reactions for RNA preparation as it prevents pyrophosphate from precipitating with magnesium, ultimately increasing the rate of the IVT reaction. Large-scale RNA production is often required for biochemical and biophysical characterization studies of RNA, therefore requiring large amounts of IVT reagents. Commercially purchased iPPase is often the most expensive component of any IVT reaction. In this paper, we demonstrate that iPPase can be produced in large quantities and high quality using a reasonably generic laboratory facility and that laboratory-purified iPPase is as effective as commercially available iPPase. Furthermore, using size exclusion chromatography coupled with multi-angle light scattering and dynamic light scattering, analytical ultracentrifugation, and small-angle X-ray scattering, we demonstrate that yeast iPPase can form tetramers and hexamers in solution as well as the enzymatically active dimer. Our work provides a robust protocol for laboratories involved with RNA in vitro transcription to efficiently produce active iPPase, significantly reducing the financial strain of large-scale RNA production.


Assuntos
Difosfatos , Pirofosfatase Inorgânica , Pirofosfatase Inorgânica/química , Pirofosfatase Inorgânica/genética , Pirofosfatase Inorgânica/metabolismo , Magnésio , Pirofosfatases/química , Pirofosfatases/genética , RNA
18.
Anal Biochem ; 652: 114728, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35609686

RESUMO

Multi-wavelength analytical ultracentrifugation (MW-AUC) is a recent development made possible by new analytical ultracentrifuge optical systems. MW-AUC extends the basic hydrodynamic information content of AUC and provides access to a wide range of new applications for biopolymer characterization, and is poised to become an essential analytical tool to study macromolecular interactions. It adds an orthogonal spectral dimension to the traditional hydrodynamic characterization by exploiting unique chromophores in analyte mixtures that may or may not interact. Here we illustrate the utility of MW-AUC for experimental investigations where the benefit of the added spectral dimension provides critical information that is not accessible, and impossible to resolve with traditional AUC methods. We demonstrate the improvements in resolution and information content obtained by this technique compared to traditional single- or dual-wavelength approaches, and discuss experimental design considerations and limitations of the method. We further address the advantages and disadvantages of the two MW optical systems available today, and the differences in data analysis strategies between the two systems.


Assuntos
Hidrodinâmica , Biopolímeros , Ultracentrifugação/métodos
19.
Nature ; 530(7590): 358-61, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26887496

RESUMO

Retroviral integrase catalyses the integration of viral DNA into host target DNA, which is an essential step in the life cycle of all retroviruses. Previous structural characterization of integrase-viral DNA complexes, or intasomes, from the spumavirus prototype foamy virus revealed a functional integrase tetramer, and it is generally believed that intasomes derived from other retroviral genera use tetrameric integrase. However, the intasomes of orthoretroviruses, which include all known pathogenic species, have not been characterized structurally. Here, using single-particle cryo-electron microscopy and X-ray crystallography, we determine an unexpected octameric integrase architecture for the intasome of the betaretrovirus mouse mammary tumour virus. The structure is composed of two core integrase dimers, which interact with the viral DNA ends and structurally mimic the integrase tetramer of prototype foamy virus, and two flanking integrase dimers that engage the core structure via their integrase carboxy-terminal domains. Contrary to the belief that tetrameric integrase components are sufficient to catalyse integration, the flanking integrase dimers were necessary for mouse mammary tumour virus integrase activity. The integrase octamer solves a conundrum for betaretroviruses as well as alpharetroviruses by providing critical carboxy-terminal domains to the intasome core that cannot be provided in cis because of evolutionarily restrictive catalytic core domain-carboxy-terminal domain linker regions. The octameric architecture of the intasome of mouse mammary tumour virus provides new insight into the structural basis of retroviral DNA integration.


Assuntos
Microscopia Crioeletrônica , DNA Viral/metabolismo , DNA Viral/ultraestrutura , Integrases/química , Integrases/ultraestrutura , Vírus do Tumor Mamário do Camundongo/enzimologia , Multimerização Proteica , Domínio Catalítico , Cristalografia por Raios X , DNA Viral/química , Integrases/metabolismo , Vírus do Tumor Mamário do Camundongo/química , Vírus do Tumor Mamário do Camundongo/genética , Vírus do Tumor Mamário do Camundongo/ultraestrutura , Modelos Moleculares , Estrutura Quaternária de Proteína , Spumavirus/química , Spumavirus/enzimologia , Integração Viral
20.
Mol Pharm ; 18(1): 246-256, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33264020

RESUMO

We present a new approach for characterizing drug-polymer interactions in aqueous media, using sedimentation velocity analytical ultracentrifugation (AUC). We investigated the potential interaction of ketoconazole (KTZ), a poorly water-soluble drug, with polyacrylic acid (PAA) and a polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus) in aqueous buffers. The effect of the polymer on the sedimentation coefficient of the drug was the observable metric. The drug alone, when subjected to AUC, exhibited a very narrow sedimentation peak at 0.2 Svedberg (S), in agreement with the expectation for a monomeric drug with a molar mass < 1000 Dalton. Conversely, the neat polymers showed broad profiles with higher sedimentation coefficients, reflecting their larger more heterogeneous size distributions. The sedimentation profiles of the drug-polymer mixtures were expectedly different from the profile of the neat drug. With KTZ-Soluplus, a complete shift to faster sedimentation times (indicative of an interaction) was observed, while with KTZ-PAA, a split peak indicated the existence of the drug in both free and interacting states. The sedimentation profile of carbamazepine, a second model drug, in the presence of hydroxypropyl methyl cellulose acetate succinate (HPMCAS, another polymer) revealed multiple "populations" of drug-polymer species, very similar to the sedimentation profile of neat HPMCAS. The interactions probed by AUC were compared with the results from isothermal titration calorimetry. In vitro dissolution tests performed on amorphous solid dispersions prepared with the same drug-polymer pairs suggested that the interactions may play a role in prolonging drug supersaturation. The results show the possibility of characterizing drug-polymer interactions in aqueous solution with high hydrodynamic resolution, addressing a major challenge frequently encountered in the mechanistic investigations of the dissolution behavior of amorphous solid dispersions.


Assuntos
Preparações Farmacêuticas/química , Polímeros/química , Água/química , Resinas Acrílicas/química , Cristalização/métodos , Cetoconazol/química , Metilcelulose/análogos & derivados , Metilcelulose/química , Polietilenoglicóis/química , Polivinil/química , Solubilidade/efeitos dos fármacos , Ultracentrifugação/métodos , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA