Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(7): 3446-3450, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32005709

RESUMO

We show that platinum displays a self-adjusting surface that is active for the hydrogenation of acetone over a wide range of reaction conditions. Reaction kinetics measurements under steady-state and transient conditions at temperatures near 350 K, electronic structure calculations employing density-functional theory, and microkinetic modeling were employed to study this behavior over supported platinum catalysts. The importance of surface coverage effects was highlighted by evaluating the transient response of isopropanol formation following either removal of the reactant ketone from the feed, or its substitution with a similarly structured species. The extent to which adsorbed intermediates that lead to the formation of isopropanol were removed from the catalytic surface was observed to be higher following ketone substitution in comparison to its removal, indicating that surface species leading to isopropanol become more strongly adsorbed on the surface as the coverage decreases during the desorption experiment. This phenomenon occurs as a result of adsorbate-adsorbate repulsive interactions on the catalyst surface which adjust with respect to the reaction conditions. Reaction kinetics parameters obtained experimentally were in agreement with those predicted by microkinetic modeling when the binding energies, activation energies, and entropies of adsorbed species and transition states were expressed as a function of surface coverage of the most abundant surface intermediate (MASI, C3H6OH*). It is important that these effects of surface coverage be incorporated dynamically in the microkinetic model (e.g., using the Bragg-Williams approximation) to describe the experimental data over a wide range of acetone partial pressures.

2.
Metab Eng ; 55: 92-101, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31226347

RESUMO

Common strategies for conversion of lignocellulosic biomass to chemical products center on deconstructing biomass polymers into fermentable sugars. Here, we demonstrate an alternative strategy, a growth-coupled, high-yield bioconversion, by feeding cells a non-sugar substrate, by-passing central metabolism, and linking a key metabolic step to generation of acetyl-CoA that is required for biomass and energy generation. Specifically, we converted levulinic acid (LA), an established degradation product of lignocellulosic biomass, to butanone (a.k.a. methyl-ethyl ketone - MEK), a widely used industrial solvent. Our strategy combines a catabolic pathway from Pseudomonas putida that enables conversion of LA to 3-ketovaleryl-CoA, a CoA transferase that generates 3-ketovalerate and acetyl-CoA, and a decarboxylase that generates 2-butanone. By removing the ability of E. coli to consume LA and supplying excess acetate as a carbon source, we built a strain of E. coli that could convert LA to butanone at high yields, but at the cost of significant acetate consumption. Using flux balance analysis as a guide, we built a strain of E. coli that linked acetate assimilation to production of butanone. This strain was capable of complete bioconversion of LA to butanone with a reduced acetate requirement and increased specific productivity. To demonstrate the bioconversion on real world feedstocks, we produced LA from furfuryl alcohol, a compound readily obtained from biomass. These LA feedstocks were found to contain inhibitors that prevented cell growth and bioconversion of LA to butanone. We used a combination of column chromatography and activated carbon to remove the toxic compounds from the feedstock, resulting in LA that could be completely converted to butanone. This work motivates continued collaboration between chemical and biological catalysis researchers to explore alternative conversion pathways and the technical hurdles that prevent their rapid deployment.


Assuntos
Butanonas/metabolismo , Escherichia coli , Ácidos Levulínicos/metabolismo , Microrganismos Geneticamente Modificados , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Pseudomonas putida/enzimologia , Pseudomonas putida/genética
3.
ChemSusChem ; 13(17): 4487-4494, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32202385

RESUMO

Hydrogenolysis has emerged as one of the most effective means of converting polymeric lignin into monoaromatic fragments of value. Reported yields may be higher than for other methods and can exceed the theoretical yields estimated from measures of the content of lignin's most readily cleaved alkyl-aryl ether bonds in ß-ether units. The high yields suggest that other units in lignin are being cleaved. Diaryl ether units are important units in lignin, and their cleavage has been examined previously using simple model compounds, such as diphenyl ether. Herein, the hydrogenolysis of model compounds that closely resemble the native lignin 4-O-5 diaryl ether units was analyzed. The results provided unexpected insights into the reactivity and partial cleavage of these compounds. The models and lignin polymer produced not only monomers, but also unusual 1,3,5-meta-substituted aromatics that appear to be diagnostic for the presence and the cleavage of the 4-O-5 diaryl ether unit in lignin.

4.
Nat Commun ; 10(1): 1132, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850608

RESUMO

The use of polar aprotic solvents in acid-catalyzed biomass conversion reactions can lead to improved reaction rates and selectivities. We show that further increases in catalyst performance in polar aprotic solvents can be achieved through the addition of inorganic salts, specifically chlorides. Reaction kinetics studies of the Brønsted acid-catalyzed dehydration of fructose to hydroxymethylfurfural (HMF) show that the use of catalytic concentrations of chloride salts leads to a 10-fold increase in reactivity. Furthermore, increased HMF yields can be achieved using polar aprotic solvents mixed with chlorides. Ab initio molecular dynamics simulations (AIMD) show that highly localized negative charge on Cl- allows the chloride anion to more readily approach and stabilize the oxocarbenium ion that forms and the deprotonation transition state. High concentrations of polar aprotic solvents form local hydrophilic environments near the reactive hydroxyl group which stabilize both the proton and chloride anions and promote the dehydration of fructose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA