Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mikrochim Acta ; 190(4): 146, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36943487

RESUMO

Heterostructured TiO2@MXene rich in oxygen vacancies defects (VO-TiO2@MXene) has been developed to construct an electrochemical sensing platform for imidacloprid (IMI) determination. For the material design, TiO2 nanoparticles were firstly in situ grown on MXene and used as a scaffolding to prevent the stack of MXene nanosheets. The obtained TiO2@MXene heterostructure displays excellent layered structure and large specific surface area. After that, electrochemical activation is utilized to treat TiO2@MXene, which greatly increases the concentration of surface oxygen vacancies (VOs), thereby remarkably enhancing the conductivity and adsorption capacity of the composite. Accordingly, the prepared VO-TiO2@MXene displays excellent electrocatalytic activity toward the reduction of IMI. Under optimum conditions, cyclic voltammetry and linear sweep voltammetry techniques were utilized to investigate the electrochemical behavior of IMI at the VO-TiO2@MXene/GCE. The proposed sensor based on VO-TiO2@MXene presents an obvious reduction peak at -1.05 V(vs. Hg|Hg2Cl2) with two linear ranges from 0.07 - 10.0 µM and 10.0 - 70.0 µM with a detection limit of 23.3 nM (S/N= 3). Furthermore, the sensor provides a reliable result for detecting IMI in fruit and vegetable samples with a recovery of 97.9-103% and RSD≤ 4.3%. A sensitive electrochemical sensing platform was reported for imidacloprid (IMI) determination based on heterostructured TiO2@MXene rich in oxygen vacancy defects.


Assuntos
Oxigênio , Verduras , Frutas , Técnicas Eletroquímicas/métodos
2.
Molecules ; 28(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38005196

RESUMO

In view of the serious side effects of chlortetracycline (CTC) on the human body, it is particularly important to develop rapid, sensitive, and selective technologies for the detection of CTC in food. In this work, a molecularly imprinted electrochemical sensor with [Fe(CN)6]3-/4- as signal probe was proposed for the highly sensitive and selective detection of CTC. For this purpose, TiO2, which acts as an interlayer scaffold, was uniformly grown on the surface of Ti3C2Tx sheets through a simple two-step calcination process using Ti3C2Tx as the precursor to effectively avoid the stacking of Ti3C2Tx layers due to hydrogen bonding and van der Waals forces. This endowed TiO2@Ti3C2Tx with large specific surface, abundant functional sites, and rapid mass transfer. Then, polypyrrole molecularly imprinted polymers (MIPs) with outstanding electrical conductivity were modified on the surface of TiO2@Ti3C2Tx via simple electro-polymerization, where the pyrrole was employed as a polymeric monomer and the CTC provided a source of template molecules. This will not only provide specific recognition sites for CTC, but also facilitate electron transport on the electrode surface. The synergistic effects between TiO2@Ti3C2Tx and polypyrrole MIPs afforded the TiO2@Ti3C2Tx/MIP-based electrochemical sensor excellent detection properties toward CTC, including ultra-low limits of detection (LOD) (0.027 nM), a wide linear range (0.06-1000 nM), and outstanding stability, reproducibility, selectivity, and feasibility in real samples. The results indicate that this strategy is feasible and will broaden the horizon for highly sensitive and selective detection of CTC.


Assuntos
Clortetraciclina , Grafite , Impressão Molecular , Humanos , Polímeros/química , Titânio , Impressão Molecular/métodos , Grafite/química , Técnicas Eletroquímicas/métodos , Reprodutibilidade dos Testes , Pirróis/química , Limite de Detecção , Polímeros Molecularmente Impressos , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA