Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892254

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. Known as COVID-19, it has affected billions of people worldwide, claiming millions of lives and posing a continuing threat to humanity. This is considered one of the most extensive pandemics ever recorded in human history, causing significant losses to both life and economies globally. However, the available evidence is currently insufficient to establish the effectiveness and safety of antiviral drugs or vaccines. The entry of the virus into host cells involves binding to angiotensin-converting enzyme 2 (ACE2), a cell surface receptor, via its spike protein. Meanwhile, transmembrane protease serine 2 (TMPRSS2), a host surface protease, cleaves and activates the virus's S protein, thus promoting viral infection. Plant protease inhibitors play a crucial role in protecting plants against insects and/or microorganisms. The major storage proteins in sweet potato roots include sweet potato trypsin inhibitor (SWTI), which accounts for approximately 60% of the total water-soluble protein and has been found to possess a variety of health-promoting properties, including antioxidant, anti-inflammatory, ACE-inhibitory, and anticancer functions. Our study found that SWTI caused a significant reduction in the expression of the ACE2 and TMPRSS2 proteins, without any adverse effects on cells. Therefore, our findings suggest that the ACE2 and TMPRSS2 axis can be targeted via SWTI to potentially inhibit SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2 , Antivirais , Ipomoea batatas , SARS-CoV-2 , Serina Endopeptidases , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Animais , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Ipomoea batatas/virologia , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , COVID-19/virologia , COVID-19/metabolismo , Inibidores da Tripsina/farmacologia , Inibidores da Tripsina/metabolismo , Internalização do Vírus/efeitos dos fármacos , Chlorocebus aethiops , Células Vero , Regulação para Baixo/efeitos dos fármacos , Camundongos
2.
Int J Mol Sci ; 24(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298398

RESUMO

One of the most popular edible mushrooms in the world, Flammulina velutipes, has been shown to possess pharmacological properties such as anti-inflammatory and antioxidant properties. However, the potential activity of the brown strain of F. velutipes, a hybrid between the white and yellow strains, has not been thoroughly investigated. Numerous studies have been conducted in recent years to determine whether natural products can aid in improving or treating kidney diseases. In this study, we focused on the renoprotective effects of the brown strain of F. velutipes on cisplatin-induced acute kidney injury (AKI) in mice. Mice were pretreated with water extract from the brown strain of F. velutipes (WFV) from day 1 to day 10, with a single-dose intraperitoneal injection of cisplatin on day 7 to induce AKI. Our results demonstrated that WFV administration resulted in a reduction in weight loss and the amelioration of renal function and renal histological changes in mice with cisplatin-induced AKI. WFV improved antioxidative stress and anti-inflammatory capacity by increasing antioxidant enzymes and decreasing inflammatory factors. The expression of related proteins was determined via Western blot analysis, which showed that WFV could improve the expression of apoptosis and autophagy. We used the PI3K inhibitor Wortmannin and found that WFV achieved a protective effect by modulating the PI3K/AKT pathway and the expression of autophagy. Overall, WFV as a natural substance could be used as a new therapeutic agent for AKI.


Assuntos
Injúria Renal Aguda , Flammulina , Camundongos , Animais , Antioxidantes/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Cisplatino/efeitos adversos , Fosfatidilinositol 3-Quinases/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Estresse Oxidativo , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Autofagia
3.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894745

RESUMO

Coronavirus disease 2019 (COVID-19), stemming from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has had a profound global impact. This highly contagious pneumonia remains a significant ongoing threat. Uncertainties persist about the virus's effects on human health, underscoring the need for treatments and prevention. Current research highlights angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) as key targets against SARS-CoV-2. The virus relies on ACE2 to enter cells and TMPRSS2 to activate its spike protein. Inhibiting ACE2 and TMPRSS2 expression can help prevent and treat SARS-CoV-2 infections. Anisomeles indica (L.) Kuntze, a medicinal plant in traditional Chinese medicine, shows various promising pharmacological properties. In this study, ethanolic extracts of A. indica were examined both in vivo (250 and 500 µM) and in vitro (500 µM). Through Western blotting analysis, a significant reduction in the expression levels of ACE2 and TMPRSS2 proteins was observed in HepG2 (human hepatocellular carcinoma) cells and HEK 293T (human embryonic kidney) cell lines without inducing cellular damage. The principal constituents of A. indica, namely, ovatodiolide (5 and 10 µM), anisomlic acid (5 and 10 µM), and apigenin (12.5 and 25 µM), were also found to produce the same effect. Furthermore, immunohistochemical analysis of mouse liver, kidney, and lung tissues demonstrated a decrease in ACE2 and TMPRSS2 protein expression levels. Consequently, this article suggests that A. indica and its constituents have the potential to reduce ACE2 and TMPRSS2 protein expression levels, thus aiding in the prevention of SARS-CoV-2 infections.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Animais , Camundongos , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Pulmão/metabolismo , Processamento de Proteína Pós-Traducional , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
4.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499094

RESUMO

The current global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of COVID-19 has infected hundreds of millions of people, killed millions, and continues to pose a threat. It has become one of the largest epidemics in human history, causing enormous damage to people's lives and economies in the whole world. However, there are still many uncertainties and continued attention to the impact of SARS-CoV-2 on human health. The entry of SARS-CoV-2 into host cells is facilitated by the binding of the spike protein on the virus surface to the cell surface receptor angiotensin-converting enzyme 2 (ACE2). Furthermore, transmembrane protease serine 2 (TMPRSS2) is a host surface protease that cleaves and proteolytically activates its S protein, which is necessary for viral infection. Thus, SARS-CoV-2 uses the ACE2 receptor for cell entry and initiates the S protein using the protease TMPRSS2. Schizophyllum commune (SC) is one of the most widely distributed fungi, often found on the rotten wood of trees that has been found to have various health benefits, including anticancer, antimicrobial activity, antiparasitic, and immunomodulatory function. In this article, SC significantly diminished the expression ACE2 and TMPRSS2 protein in vitro and in vivo without cell damage. In addition, adenosine from SC was also proven in this experiment to reduce the ACE2 and TMPRSS2 expression. Thus, our findings suggest that SC and adenosine exhibit potential for the repression of SARS-CoV-2 infection via the ACE2 and TMPRSS2 axis.


Assuntos
Enzima de Conversão de Angiotensina 2 , Produtos Biológicos , COVID-19 , Schizophyllum , Serina Endopeptidases , Humanos , Adenosina , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2/metabolismo , Schizophyllum/química , Serina Endopeptidases/genética , Produtos Biológicos/farmacologia
5.
Int J Mol Sci ; 18(2)2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28178212

RESUMO

Acute lung injury (ALI) is characterized by inflammation of the lung tissue and oxidative injury caused by excessive accumulation of reactive oxygen species. Studies have suggested that anti-inflammatory or antioxidant agents could be used for the treatment of ALI with a good outcome. Therefore, our study aimed to test whether the mycelium extract of Sanghuangporus sanghuang (SS-1), believed to exhibit antioxidant and anti-inflammatory properties, could be used against the excessive inflammatory response associated with lipopolysaccharides (LPS)-induced ALI in mice and to investigate its possible mechanism of action. The experimental results showed that the administration of SS-1 could inhibit LPS-induced inflammation. SS-1 could reduce the number of inflammatory cells, inhibit myeloperoxidase (MPO) activity, regulate the TLR4/PI3K/Akt/mTOR pathway and the signal transduction of NF-κB and MAPK pathways in the lung tissue, and inhibit high mobility group box-1 protein 1 (HNGB1) activity in BALF. In addition, SS-1 could affect the synthesis of antioxidant enzymes Heme oxygenase 1 (HO-1) and Thioredoxin-1 (Trx-1) in the lung tissue and regulate signal transduction in the KRAB-associated protein-1 (KAP1)/nuclear factor erythroid-2-related factor Nrf2/Kelch Like ECH associated Protein 1 (Keap1) pathway. Histological results showed that administration of SS-1 prior to induction could inhibit the large-scale LPS-induced neutrophil infiltration of the lung tissue. Therefore, based on all experimental results, we propose that SS-1 exhibits a protective effect against LPS-induced ALI in mice. The mycelium of S. sanghuang can potentially be used for the treatment or prevention of inflammation-related diseases.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Anti-Inflamatórios/farmacologia , Basidiomycota/química , Produtos Biológicos/farmacologia , Micélio/química , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Produtos Biológicos/administração & dosagem , Produtos Biológicos/química , Citocinas/metabolismo , Modelos Animais de Doenças , Heme Oxigenase-1/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/efeitos adversos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Tiorredoxinas/metabolismo , Receptor 4 Toll-Like/metabolismo
6.
Molecules ; 22(4)2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28350337

RESUMO

3,4-Dihydroxybenzalactone (DBL) was isolated from Phellinus linteus (PL), which is a folk medicine possessing various physiological effects. In this study, we used highly metastatic A549 cells to investigate efficacy of DBL inhibition of cancer metastasis and possible mechanisms. The results revealed DBL inhibited migratory and invasive abilities of cancer cells at noncytotoxic concentrations. We found DBL suppressed enzymatic activities, protein expression, and RNA levels of matrix metalloproteinase (MMP)-2 and MMP-9. Western blot results showed DBL decreased phosphoinositide 3-kinase (PI3K)/AKT, phosphorylation status of mitogen-activated protein kinases (MAPKs), and focal adhesion kinase (FAK)/paxillin, which correlated with cell migratory ability. DBL also affected epithelial to mesenchymal transition (EMT)-related biomarkers. In addition, DBL enhanced cytoprotective effects through elevated antioxidant enzymes including heme oxygenase 1 (HO-1), catalase, glutathione peroxidase (GPx), and superoxide dismutase (SOD). Moreover, DBL influenced the nuclear translocation of nuclear factor κB (NFκB), nuclear factor erythroid 2-related factor 2 (Nrf2), Snail, and Slug in A549 cells. Taken together, these results suggested that treatment with DBL may act as a potential candidate to inhibit lung cancer metastasis by inhibiting MMP-2 and -9 via affecting PI3K/AKT, MAPKs, FAK/paxillin, EMT/Snail and Slug, Nrf2/antioxidant enzymes, and NFκB signaling pathways.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Lactonas/química , Neoplasias Pulmonares/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Extratos Vegetais/química , Células A549 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lactonas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Metástase Neoplásica , Phellinus , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo
7.
Biomed Pharmacother ; 165: 115080, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37392658

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a type of interstitial pneumonia characterized by chronic and progressive fibrosis with an unknown etiology. Previous pharmacological studies have shown that Sanghuangporus sanghuang possesses various beneficial properties including immunomodulatory, hepatoprotective, antitumor, antidiabetic, anti-inflammatory, and neuroprotective effects. This study used a bleomycin (BLM)-induced IPF mouse model to illustrate the possible benefits of SS in ameliorating IPF. BLM was administered on day 1 to establish a pulmonary fibrosis mouse model, and SS was administered through oral gavage for 21 d. Hematoxylin and eosin (H&E) and Masson's trichrome staining results showed that SS significantly reduced tissue damage and decreased fibrosis expression. We observed that SS treatment resulted in a substantial lowering in the level of pro-inflammatory cytokines like TGF-ß, TNF-α, IL-1ß, and IL-6 as well as MPO. In addition, we observed a notable increase in glutathione (GSH) levels. Western blot analysis of SS showed that it reduces inflammatory factors (TWEAK, iNOS, and COX-2), MAPK (JNK, p-ERK, and p-38), fibrosis-related molecules (TGF-ß, SMAD3, fibronectin, collagen, α-SMA, MMP2, and MMP9), apoptosis (p53, p21, and Bax), and autophagy (Beclin-1, LC3A/B-I/II, and p62), and notably increases caspase 3, Bcl-2, and antioxidant (Catalase, GPx3, and SOD-1) levels. SS alleviates IPF by regulating the TLR4/NF-κB/MAPK, Keap1/Nrf2/HO-1, CaMKK/AMPK/Sirt1, and TGF-ß/SMAD3 pathways. These results suggest that SS has a pharmacological activity that protects the lungs and has the potential to improve pulmonary fibrosis.


Assuntos
NF-kappa B , Fibrose Pulmonar , Camundongos , Animais , NF-kappa B/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Sirtuína 1/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Pulmão , Fibrose , Fator de Crescimento Transformador beta/metabolismo , Apoptose , Bleomicina/farmacologia , Modelos Animais de Doenças , Transdução de Sinais , Autofagia
8.
Artigo em Inglês | MEDLINE | ID: mdl-22013489

RESUMO

The hepatoprotective potential of hispolon against carbon tetrachloride (CCl(4))-induced liver damage was evaluated in preventive models in rats. Male rats were intraperitoneally treated with hispolon or silymarin once daily for 7 consecutive days. One hour after the final hispolon or silymarin treatment, the rats were injected with CCl(4). Administration with hispolon or silymarin significantly decreased the alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in serum and increased the activities of superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and glutathione (GSH) content and decreased the malondialdehyde (MDA) content in liver compared with CCl(4)-treated group. Liver histopathology also showed that hispolon reduced the incidence of liver lesions induced by CCl(4). In addition, hispolon decreased nitric oxide (NO) production and tumor necrosis factor (TNF-α), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) activation in CCl(4)-treated rats. We also examined the involvement of matrix metalloproteinase (MMP)-9 in the development of CCl(4)-induced liver damage in rats. Hispolon inhibited the expression of MMP-9 protein, indicating that MMP-9 played an important role in the development of CCl(4)-induced rat liver damage. Therefore, we speculate that hispolon protects rats from liver damage through their prophylactic redox balancing ability and anti-inflammation capacity.

9.
Artigo em Inglês | MEDLINE | ID: mdl-22536283

RESUMO

We have investigated the anti-inflammatory effects of Cinnamomum cassia constituents (cinnamic aldehyde, cinnamic alcohol, cinnamic acid, and coumarin) using lipopolysaccharide (LPS)-stimulated mouse macrophage (RAW264.7) and carrageenan (Carr)-induced mouse paw edema model. When RAW264.7 macrophages were treated with cinnamic aldehyde together with LPS, a significant concentration-dependent inhibition of nitric oxide (NO), tumor necrosis factor (TNF-α), and prostaglandin E2 (PGE(2)) levels productions were detected. Western blotting revealed that cinnamic aldehyde blocked protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear transcription factor kappa B (NF-κB), and IκBα, significantly. In the anti-inflammatory test, cinnamic aldehyde decreased the paw edema after Carr administration, and increased the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in the paw tissue. We also demonstrated cinnamic aldehyde attenuated the malondialdehyde (MDA) level and myeloperoxidase (MPO) activity in the edema paw after Carr injection. Cinnamic aldehyde decreased the NO, TNF-α, and PGE(2) levels on the serum level after Carr injection. Western blotting revealed that cinnamic aldehyde decreased Carr-induced iNOS, COX-2, and NF-κB expressions in the edema paw. These findings demonstrated that cinnamic aldehyde has excellent anti-inflammatory activities and thus has great potential to be used as a source for natural health products.

10.
Artigo em Inglês | MEDLINE | ID: mdl-23227095

RESUMO

Actinidia callosa var. callosa has been widely used to treat antipyretic, analgesic, anti-inflammation, abdominal pain, and fever in Taiwan. The aim of this study was to evaluate the antioxidant, antinociceptive, and anti-inflammatory lipopolysaccharide-(LPS-)induced nitric oxide (NO) production in RAW264.7 macrophages and pawedema induced by λ-carrageenan activities of the methanol extract from A. callosa. In HPLC analysis, the fingerprint chromatogram of ethyl-acetate fraction of A. callosa (EAAC) was established. EAAC showed the highest TEAC and DPPH radical scavenging activities, respectively. We evaluated that EAAC and the reference compound of catechin and caffeic acid decreased the LPS-induced NO production in RAW264.7 cells. Treatment of male ICR mice with EAAC significantly inhibited the numbers of acetic acid-induced writhing response and the formalin-induced pain in the late phase. Administration of EAAC showed a concentration-dependent inhibition on paw edema development after Carr treatment in mice. Anti-inflammatory mechanisms of EAAC might be correlated to the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and heme oxygenase-1 (HO-1) in vitro and in vivo. Overall, the results showed that EAAC demonstrated antioxidant, antinociceptive, and anti-inflammatory activity, which supports previous claims of the traditional use for inflammation and pain.

11.
Artigo em Inglês | MEDLINE | ID: mdl-22991572

RESUMO

Scopoletin exists in nature as an anti-oxidant, hepatoprotective, and anti-inflammatory activities reagent. In this study, we have investigated the analgesic effects of the scopoletin using the models of acetic acid-induced writhing response and the formalin test, the anti-inflammatory effects of scopoletin using model of λ-carrageenan (Carr)-induced paw edema. The treatment of ICR mice with scopoletin inhibited the numbers of writhing response and the formalin-induced pain in the late phase. This study demonstrated that the administration of scopoletin resulted in the reduction of Carr-induced mice edema, and it increased the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) after Carr injection. We also demonstrated scopoletin significantly attenuated the malondialdehyde (MDA) level in the edema paw after Carr injection. Scopoletin decreased the NO, tumor necrosis factor (TNF-α) and prostaglandin E2 (PGE(2)) levels on serum after Carr injection. Scopoletin decreased Carr-induced inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions in the edema paw. These anti-inflammatory mechanisms of scopoletin might be related to the decrease in the level of MDA via increasing the activities of SOD, CAT, and GPx in the edema paw. Also, scopoletin could affect the production of NO, TNF-α, and PGE(2), and therefore affect the anti-inflammatory effects.

12.
Artigo em Inglês | MEDLINE | ID: mdl-22778769

RESUMO

Anti-inflammatory effects of the aqueous extract of Hibiscus taiwanensis (AHT) were used in lipopolysaccharide (LPS-)stimulated mouse macrophage RAW264.7 cells and carrageenan (Carr-)induced mouse paw edema model. When RAW264.7 macrophages were treated with AHT together with LPS, a concentration-dependent inhibition of nitric oxide (NO), tumor necrosis factor (TNF-α), and prostaglandin E2 (PGE(2)) levels productions were detected. Western blotting revealed that AHT blocked protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and elevated heme oxygenase-1 (HO-1), significantly. In the animal test, AHT decreased the paw edema at the 4th and the 5th h after Carr administration, and it increased the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in the paw tissue. We also demonstrated AHT decreased the NO, TNF-α, and PGE2 levels on the serum level at the 5th h after the Carr injection. Western blotting revealed that AHT decreased Carr-induced iNOS, and COX-2, and increased HO-1 expressions at the 5th h in the edema paw. These findings demonstrated that AHT has excellent anti-inflammatory activities in vitro and in vivo and thus it has great potential to be used as a source for natural health products.

13.
J Sci Food Agric ; 92(6): 1186-93, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22131195

RESUMO

BACKGROUND: Mesona procumbens is consumed as a herbal drink and jelly-type dessert in Taiwan. The aim of this study was to determine the mechanism of anti-inflammatory activities of the aqueous extract of M. procumbens (AMP) using the λ-carrageenin (Carr)-induced mouse paw oedema model. The fingerprint chromatogram of AMP was obtained by high-performance liquid chromatography (HPLC) analysis. To investigate the anti-inflammatory mechanism of AMP, the activities of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) and the level of malondialdehyde (MDA) in paw oedema were monitored. Serum nitric oxide (NO), tumour necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were also evaluated. RESULTS: The fingerprint chromatogram from HPLC indicated that AMP contained protocatechuic acid, chlorogenic acid, vanillic acid and caffeic acid. In the anti-inflammatory test, AMP decreased paw oedema after Carr administration and increased the CAT, SOD and GPx activities and decreased the MDA level in paw oedema at 5 h after Carr injection. AMP also affected the serum NO, TNF-α and IL-1ß levels at 5 h after Carr injection. Western blotting revealed that AMP decreased the expression of Carr-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). CONCLUSION: Mesona procumbens has the potential to provide a therapeutic approach to inflammation-associated disorders.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antioxidantes/metabolismo , Edema/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Lamiaceae/química , Fitoterapia , Extratos Vegetais/uso terapêutico , Animais , Anti-Inflamatórios/análise , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Western Blotting , Ácidos Cafeicos/análise , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/uso terapêutico , Carragenina , Catalase/metabolismo , Ácido Clorogênico/análise , Ácido Clorogênico/farmacologia , Ácido Clorogênico/uso terapêutico , Cromatografia Líquida de Alta Pressão , Inibidores de Ciclo-Oxigenase 2/análise , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Edema/metabolismo , Glutationa Peroxidase/metabolismo , Hidroxibenzoatos/análise , Hidroxibenzoatos/farmacologia , Hidroxibenzoatos/uso terapêutico , Masculino , Malondialdeído/sangue , Camundongos , Camundongos Endogâmicos ICR , Óxido Nítrico Sintase Tipo II/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Superóxido Dismutase/metabolismo
14.
Front Pharmacol ; 13: 816029, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250565

RESUMO

Ethnopharmacological evidence: In Taiwan, herbal tea is considered a traditional medicine and has been consumed for hundreds of years. In contrast to regular tea, herbal teas are prepared using plants other than the regular tea plant, Camellia sinensis (L.) Kuntze. Bitter tea (kǔ-chá), a series of herbal teas prepared in response to common diseases in Taiwan, is often made from local Taiwanese plants. However, the raw materials and formulations have been kept secret and verbally passed down by store owners across generations without a fixed recipe, and the constituent plant materials have not been disclosed. Aim of the study: The aim was to determine the herbal composition of bitter tea sold in Taiwan, which can facilitate further studies on pharmacological applications and conserve cultural resources. Materials and methods: Interviews were conducted through a semi-structured questionnaire. The surveyed respondents were traditional sellers of traditional herbal tea. The relevant literature was collated for a systematic analysis of the composition, characteristics, and traditional and modern applications of the plant materials used in bitter tea. We also conducted an association analysis of the composition of Taiwanese bitter tea with green herb tea (qing-cao-cha tea), another commonly consumed herbal tea in Taiwan, as well as herbal teas in neighboring areas outside Taiwan. Results: After visiting a total of 59 stores, we identified 32 bitter tea formulations and 73 plant materials. Asteraceae was the most commonly used family, and most stores used whole plants. According to a network analysis of nine plant materials used in high frequency as drug pairs, Tithonia diversifolia and Ajuga nipponensis were found to be the core plant materials used in Taiwanese bitter tea. Conclusion: Plant materials used in Taiwanese bitter tea were distinct, with multiple therapeutic functions. Further research is required to clarify their efficacy and mechanisms.

15.
Biomed Pharmacother ; 153: 113434, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076488

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has led to the most severe global pandemic, which began in Wuhan, China. Angiotensin-converting enzyme 2 (ACE2) combines with the spike protein of SARS-CoV-2, allowing the virus to cross the membrane and enter the cell. SARS-CoV-2 is modified by the transmembrane protease serine 2 (TMPRSS2) to facilitate access to cells. Accordingly, ACE2 and TMPRSS2 are targets of vital importance for the avoidance of SARS-CoV-2 infection. Sanghuangporus sanghuang (SS) is a traditional Chinese medicine that has been demonstrated to have antitumor, antioxidant, anti-inflammatory, antidiabetic, hepatoprotective, neuroprotective and immunomodulatory properties. In this paper, we demonstrated that SS decreased ACE2 and TMPRSS2 expression in cell lines and a mouse model without cytotoxicity or organ damage. Liver and kidney sections were confirmed to have reduced expression of ACE2 and TMPRSS2 by immunohistochemistry (IHC) assessment. Then, hispidin, DBA, PAC, PAD and CA, phenolic compounds of SS, were also tested and verified to reduce the expression of ACE2 and TMPRSS2. In summary, the results indicate that SS and its phenolic compounds have latent capacity for preventing SARS-CoV-2 infection in the future.


Assuntos
Enzima de Conversão de Angiotensina 2 , Tratamento Farmacológico da COVID-19 , Animais , Basidiomycota , Camundongos , Camundongos Endogâmicos DBA , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
16.
Nutrients ; 14(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35889833

RESUMO

Acute kidney injury (AKI) describes a sudden loss of kidney function and is associated with a high mortality. Pediococcus acidilactici is a potent producer of bacteriocin and inhibits the growth of pathogens during fermentation and food storage; it has been used in the food industry for many years. In this study, the potential of P. acidilactici GKA4 (GKA4) to ameliorate AKI was investigated using a cisplatin-induced animal model. First, mice were given oral GKA4 for ten days and intraperitoneally injected with cisplatin on the seventh day to create an AKI mode. GKA4 attenuated renal histopathological alterations, serum biomarkers, the levels of inflammatory mediators, and lipid oxidation in cisplatin-induced nephrotoxicity. Moreover, GKA4 significantly decreased the expression of inflammation-related proteins and mitogen-activated protein kinase (MAPK) in kidney tissues. Eventually, GKA4 also increased the levels of related antioxidant enzymes and pathways. Consistently, sirtuin 1 (SIRT1) upregulated the level of autophagy-related proteins (LC3B, p62, and Beclin1). Further studies are needed to check our results and advance our knowledge of the mechanism whereby PI3K inhibition (wortmannin) reverses the effect of GKA4 on cisplatin-treated AKI. Taken together, GKA4 provides a therapeutic target with promising clinical potential after cisplatin treatment by reducing oxidative stress and inflammation via the MAPK, AMP-activated protein kinase (AMPK)/SIRT1/nuclear factor kappa B (NF-κB), and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) axes.


Assuntos
Injúria Renal Aguda , Pediococcus acidilactici , Proteínas Quinases Ativadas por AMP/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Animais , Cisplatino/toxicidade , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Pediococcus acidilactici/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sirtuína 1/genética , Sirtuína 1/metabolismo
17.
Antioxidants (Basel) ; 10(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34679755

RESUMO

Acute kidney injury (AKI) is a sudden reduction in kidney activity and has a high mortality rate. Salvianolic acid C (SAC), one of the main polyphenolic components of Salvia miltiorrhiza, displays significant pharmacologically active effects. An animal model of cisplatin-induced kidney injury was used to study the potential of SAC to improve AKI. First, SAC was administered intraperitoneally in mice for 10 consecutive days, and then cisplatin was administered intraperitoneally on day 7 to establish a nephrotoxicity mouse model. SAC mitigated renal histological changes, blood creatinine (CRE) and blood urea nitrogen (BUN) production and the levels of inflammatory mediators in the cisplatin-induced AKI. Furthermore, malondialdehyde (MDA) levels were reduced and glutathione (GSH) was increased after intraperitoneal injection (i.p.) administration of SAC. In addition, based on Western blot data, SAC reduced the expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) activation in mouse renal tissues. Finally, SAC diminished the level of TLR-4 expression and enhanced the production of several antioxidative enzymes (superoxidase dismutase (SOD1), glutathione peroxidase (GPx3), catalase, nuclear-factor-erythroid-2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1)), Sirtuin 1 (Sirt1), p-AMP-activated protein kinase (AMPK) and p-Ca2+/calmodulin-dependent protein kinase kinase (CaMKK). In addition, Sirt1 inhibition (EX 527) inverted the effect of SAC against cisplatin-induced nephrotoxicity. Collectively, SAC provides a therapeutic target with promising clinical potential after cisplatin treatment by attenuating oxidative stress and inflammation.

18.
Antioxidants (Basel) ; 10(6)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199606

RESUMO

Liver damage induced by paracetamol overdose is the main cause of acute liver failure worldwide. In order to study the hepatoprotective effect of Sanghuangporus sanghuang mycelium (SS) on paracetamol-induced liver injury, SS was administered orally every day for 6 days in mice before paracetamol treatment. SS decreased serum aminotransferase activities and the lipid profiles, protecting against paracetamol hepatotoxicity in mice. Furthermore, SS inhibited the lipid peroxidation marker malondialdehyde (MDA), hepatic cytochrome P450 2E1 (CYP2E1), and the histopathological changes in the liver and decreased inflammatory activity by inhibiting the production of proinflammatory cytokines in paracetamol-induced acute liver failure. Moreover, SS improved the levels of glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase in the liver. Significantly, SS diminished mitogen-activated protein kinase (MAPK), Toll-like receptor 4 (TLR4), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), and the nuclear factor-kappa B (NF-κB) axis, as well as upregulated the Kelch-like ECH-associated protein 1 (Keap1)/erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway, in paracetamol-induced mice. SS mainly inhibited the phosphorylation of the liver kinase B1 (LKB1), Ca2+/calmodulin-dependent kinase kinase ß (CaMKKß), and AMP-activated protein kinase (AMPK) protein expression. Furthermore, the protective effects of SS on paracetamol-induced hepatotoxicity were abolished by compound C, an AMPK inhibitor. In summary, we provide novel molecular evidence that SS protects liver cells from paracetamol-induced hepatotoxicity by inhibiting oxidative stress and inflammation.

19.
Nutrients ; 12(6)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32532087

RESUMO

The anti-inflammatory effect of hispolon has identified it as one of the most important compounds from Sanghuangporus sanghuang. The research objectives were to study this compound using an animal model by lipopolysaccharide (LPS)-induced acute lung injury. Hispolon treatment reduced the production of the pro-inflammatory mediator NO, TNF-α, IL-1ß, and IL-6 induced by LPS challenge in the lung tissues, as well as decreasing their histological alterations and protein content. Total cell number was also reduced in the bronchoalveolar lavage fluid (BALF). Moreover, hispolon inhibited iNOS, COX-2 and IκB-α and phosphorylated IKK and MAPK, while increasing catalase, SOD, GPx, TLR4, AKT, HO-1, Nrf-2, Keap1 and PPARγ expression, after LPS challenge. It also regulated apoptosis, ER stress and the autophagy signal transduction pathway. The results of this study show that hispolon regulates LPS-induced ER stress (increasing CHOP, PERK, IRE1, ATF6 and GRP78 protein expression), apoptosis (decreasing caspase-3 and Bax and increasing Bcl-2 expression) and autophagy (reducing LC3 I/II and Beclin-1 expression). This in vivo experimental study suggests that hispolon suppresses the LPS-induced activation of inflammatory pathways, oxidative injury, ER stress, apoptosis and autophagy and has the potential to be used therapeutically in major anterior segment lung diseases.


Assuntos
Lesão Pulmonar Aguda/genética , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Catecóis/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/isolamento & purificação , Receptor 4 Toll-Like/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Anti-Inflamatórios , Catecóis/uso terapêutico , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lipopolissacarídeos/efeitos adversos , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos ICR , Fator 2 Relacionado a NF-E2/metabolismo , Fitoterapia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
20.
Front Pharmacol ; 11: 931, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670061

RESUMO

Herbal tea, a beverage prepared from a variety of plant materials excluding the leaves of the tea plant Camellia sinensis (L.) Kuntze of the family Theaceae, for a long time, has been consumed by most Chinese people for preventive and/or therapeutic health care. Usually, it is brewed or prepared as a decoction of local plants in water. The qing-cao-chá tea, a commercial herbal tea, is the most common among many differently formulated herbal teas in Taiwan. For hundreds of years, qing-cao-chá tea has played an important role in the prevention and treatment of diseases associated with the environmental conditions in Taiwan. However, research studies in this field have been insufficient. The raw material formulas of qing-cao-chá tea have always been passed down from "masters" to "apprentices." Hence, there is no systematic collation or record, and, therefore, there is a need to assess and confirm the composition, safety, and effectiveness of the raw materials. This study aimed to document the uses of Taiwan's qing-cao-chá tea through a semi-structured interview survey and investigate the background of traditional practitioners, tea compositions, and plant origins and uses. This will improve our understanding of the knowledge inherited by the practitioners and the theoretical basis of the medicinal uses of these teas. In our field investigation, we visited 86 shops and assessed 71 raw ingredients of qing-cao-chá tea. A semi-structured questionnaire was used to conduct the interviews. During the interviews, in addition to written records, audio and video recordings were made, and photographs were taken with the permission of the interviewees. The qing-cao-chá raw materials have long been used as herbal teas, although more research should clarify their efficacy and safety. Traditional sellers of qing-cao-chá tea were mainly males, and most shops have been in operation for more than 71 years. Some of the raw materials were derived from multiple sources, including different plants, and were often mixed without any safety concerns. To our knowledge, this is the first systematic ethnobotanical study on qing-cao-chá tea that assesses and confirms its herbal ingredients. Our study represents a reference for herbal teas in Taiwan that can be used by the public and regulatory agencies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA