Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 119(1): 57-74, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38151579

RESUMO

Cardiac sympathetic overactivation is a critical driver in the progression of acute myocardial infarction (AMI). The left middle cervical ganglion (LMCG) is an important extracardiac sympathetic ganglion. However, the regulatory effects of LMCG on AMI have not yet been fully documented. In the present study, we detected that the LMCG was innervated by abundant sympathetic components and exerted an excitatory effect on the cardiac sympathetic nervous system in response to stimulation. In canine models of AMI, targeted ablation of LMCG reduced the sympathetic indexes of heart rate variability and serum norepinephrine, resulting in suppressed cardiac sympathetic activity. Moreover, LMCG ablation could improve ventricular electrophysiological stability, evidenced by the prolonged ventricular effective refractory period, elevated action potential duration, increased ventricular fibrillation threshold, and enhanced connexin43 expression, consequently showing antiarrhythmic effects. Additionally, compared with the control group, myocardial infarction size, circulating cardiac troponin I, and myocardial apoptosis were significantly reduced, accompanied by preserved cardiac function in canines subjected to LMCG ablation. Finally, we performed the left stellate ganglion (LSG) ablation and compared its effects with LMCG destruction. The results indicated that LMCG ablation prevented ventricular electrophysiological instability, cardiac sympathetic activation, and AMI-induced ventricular arrhythmias with similar efficiency as LSG denervation. In conclusion, this study demonstrated that LMCG ablation suppressed cardiac sympathetic activity, stabilized ventricular electrophysiological properties and mitigated cardiomyocyte death, resultantly preventing ischemia-induced ventricular arrhythmias, myocardial injury, and cardiac dysfunction. Neuromodulation therapy targeting LMCG represented a promising strategy for the treatment of AMI.


Assuntos
Infarto do Miocárdio , Animais , Cães , Arritmias Cardíacas , Coração/inervação , Fibrilação Ventricular/etiologia , Fibrilação Ventricular/prevenção & controle , Gânglios Simpáticos/metabolismo
2.
Circ Res ; 130(10): 1586-1600, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35437018

RESUMO

BACKGROUND: Pathological cardiac hypertrophy is one of the leading causes of heart failure with highly complicated pathogeneses. The E3 ligase TRIM16 (tripartite motif-containing protein 16) has been recognized as a pivotal regulator to control cell survival, immune response, and oxidativestress. However, the role of Trim16 in cardiac hypertrophy is unknown. METHODS: We generated cardiac-specific knockout mice and adeno-associated virus serotype 9-Trim16 mice to evaluate the function of Trim16 in pathological myocardial hypertrophy. The direct effect of TRIM16 on cardiomyocyte enlargement was examined using an adenovirus system. Furthermore, we combined RNA-sequencing and interactome analysis that was followed by multiple molecular biological methodologies to identify the direct target and corresponding molecular events contributing to TRIM16 function. RESULTS: We found an intimate correlation of Trim16 expression with hypertrophy-related heart failure in both human and mouse. Our functional investigations and unbiased transcriptomic analyses clearly demonstrated that Trim16 deficiency markedly exacerbated cardiomyocyte enlargement in vitro and in transverse aortic constriction-induced cardiac hypertrophy mouse model, whereas Trim16 overexpression attenuated cardiac hypertrophy and remodeling. Mechanistically, Prdx1 (peroxiredoxin 1) is an essential target of Trim16 in cardiac hypertrophy. We found that Trim16 interacts with Prdx1 and inhibits its phosphorylation, leading to a robust enhancement of its downstream Nrf2 (nuclear factor-erythroid 2-related factor 2) pathway to block cardiac hypertrophy. Trim16-blocked Prdx1 phosphorylation was largely dependent on a direct interaction between Trim16 and Src and the resultant Src ubiquitinational degradation. Notably, Prdx1 knockdown largely abolished the anti-hypertrophic effects of Trim16 overexpression. CONCLUSIONS: Our findings provide the first evidence supporting Trim16 as a novel suppressor of pathological cardiac hypertrophy and indicate that targeting the Trim16-Prdx1 axis represents a promising therapeutic strategy for hypertrophy-related heart failure.


Assuntos
Cardiomegalia , Insuficiência Cardíaca , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Animais , Cardiomegalia/metabolismo , Modelos Animais de Doenças , Insuficiência Cardíaca/metabolismo , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética
3.
Inflamm Res ; 73(6): 929-943, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642079

RESUMO

OBJECTIVES: Intimal hyperplasia is a serious clinical problem associated with the failure of therapeutic methods in multiple atherosclerosis-related coronary heart diseases, which are initiated and aggravated by the polarization of infiltrating macrophages. The present study aimed to determine the effect and underlying mechanism by which tumor necrosis factor receptor-associated factor 5 (TRAF5) regulates macrophage polarization during intimal hyperplasia. METHODS: TRAF5 expression was detected in mouse carotid arteries subjected to wire injury. Bone marrow-derived macrophages, mouse peritoneal macrophages and human myeloid leukemia mononuclear cells were also used to test the expression of TRAF5 in vitro. Bone marrow-derived macrophages upon to LPS or IL-4 stimulation were performed to examine the effect of TRAF5 on macrophage polarization. TRAF5-knockout mice were used to evaluate the effect of TRAF5 on intimal hyperplasia. RESULTS: TRAF5 expression gradually decreased during neointima formation in carotid arteries in a time-dependent manner. In addition, the results showed that TRAF5 expression was reduced in classically polarized macrophages (M1) subjected to LPS stimulation but was increased in alternatively polarized macrophages (M2) in response to IL-4 administration, and these changes were demonstrated in three different types of macrophages. An in vitro loss-of-function study with TRAF5 knockdown plasmids or TRAF5-knockout mice revealed high expression of markers associated with M1 macrophages and reduced expression of genes related to M2 macrophages. Subsequently, we incubated vascular smooth muscle cells with conditioned medium of polarized macrophages in which TRAF5 expression had been downregulated or ablated, which promoted the proliferation, migration and dedifferentiation of VSMCs. Mechanistically, TRAF5 knockdown inhibited the activation of anti-inflammatory M2 macrophages by directly inhibiting PPARγ expression. More importantly, TRAF5-deficient mice showed significantly aggressive intimal hyperplasia. CONCLUSIONS: Collectively, this evidence reveals an important role of TRAF5 in the development of intimal hyperplasia through the regulation of macrophage polarization, which provides a promising target for arterial restenosis-related disease management.


Assuntos
Hiperplasia , Macrófagos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR gama , Fator 5 Associado a Receptor de TNF , Animais , Macrófagos/metabolismo , Fator 5 Associado a Receptor de TNF/genética , Fator 5 Associado a Receptor de TNF/metabolismo , PPAR gama/metabolismo , PPAR gama/genética , Masculino , Camundongos , Humanos , Artérias Carótidas/patologia , Neointima/patologia , Neointima/metabolismo , Interleucina-4/genética , Células Cultivadas , Túnica Íntima/patologia , Lipopolissacarídeos/farmacologia
4.
J Oral Rehabil ; 51(7): 1123-1134, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38491740

RESUMO

OBJECTIVE: Previous studies focused on the benefits of adequate prosthodontic treatment, while few studies have investigated the prosthodontic-related risks to health. As a modifiable oral health indicator, the association of ill-fitting prosthesis (IFP) with hypertension has not been fully explored. METHODS: This cross-sectional study involved 158,659 adults in Beijing (2009-2017) receiving intra-oral examinations and blood pressure measurements. Logistic regression models were applied to assess the association of IFP with the prevalence of hypertension, systolic blood pressure (SBP) ≧ 140 mmHg and diastolic blood pressure (DBP) ≧ 90 mmHg, as well as subgroup analyses by different fixed IFP subgroups (according to involved teeth number) and removable IFP subgroup. We further investigated effect modifications among stratified populations. RESULTS: 158,659 individuals were included for analysis, 346 (26.86%) in IFP group and 27,380 (17.40%) in non-IFP group (p < 0.001) were hypertensive. After adjustment of sex, age, obesity, dyslipidaemia, diabetes, hsCRP, family history of CVD, self-reported smoking, self-reported drinking and WC, ORs of hypertension, SBP ≧ 140 mmHg and DBP ≧ 90 mmHg were 1.330 (95% CI: 1.162-1.522), 1.277 (95% CI: 1.098-1.486) and 1.376 (95% CI: 1.186-1.596), respectively (p < 0.05). Furthermore, after full adjustment, the number of involved teeth showed a significant incremental trend with hypertension risk in the population with and without IFP (p for trend <0.001). The IFP-blood pressure associations were more pronounced in females, 18-60 years, non-obese and diabetic participants. CONCLUSION: As a modifiable oral indicator, IFP was significantly associated with a higher risk of hypertension.


Assuntos
Hipertensão , Humanos , Hipertensão/epidemiologia , Feminino , Estudos Transversais , Masculino , Pessoa de Meia-Idade , Adulto , Fatores de Risco , Prevalência , Idoso , Ajuste de Prótese , Pressão Sanguínea/fisiologia , Pequim/epidemiologia , Prótese Dentária/efeitos adversos
5.
Int J Exp Pathol ; 104(5): 237-246, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37431082

RESUMO

Recently macrophage polarization has emerged as playing an essential role in the oathogenesis of atherosclerosis, which is the most important underlying process in many types of cardiovascular diseases. Although Nek6 has been reported to be involved in various cellular processes, the effect of Nek6 on macrophage polarization remains unknown. Macrophages exposed to lipopolysaccharide (LPS) or IL-4 were used to establish an in vitro model for the study of regulation of classically (M1) or alternatively (M2) activated macrophage. Bone marrow-derived macrophages (BMDMs) transfected with short hairpin RNA-targeting Nek6 were then in functional studies. We observed that Nek6 expression was decreased in both peritoneal macrophages (PMs) and BMDMs stimulated by LPS. This effect was seen at both mRNA and protein level. The opposite results were obtained after administration of IL-4. Macrophage-specific Nek6 knockdown significantly exacerbated pro-inflammatory M1 polarized macrophage gene expression in response to LPS challenge, but the anti-inflammatory response gene expression that is related to M2 macrophages was attenuated by Nek6 silencing followed by treatment with IL-4. Mechanistic studies exhibited that Nek6 knockdown inhibited the phosphorylated STAT3 expression that mediated the effect on macrophage polarization regulated by AdshNek6. Moreover, decreased Nek6 expression was also observed in atherosclerotic plaques. Collectively, these evidences suggested that Nek6 acts as a crucial site in macrophage polarization, and that this operates in a STAT3-dependent manner.


Assuntos
Macrófagos , Quinases Relacionadas a NIMA , Fator de Transcrição STAT3 , Interleucina-4/farmacologia , Interleucina-4/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Fenótipo , RNA Interferente Pequeno , Animais , Camundongos , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Fator de Transcrição STAT3/metabolismo
6.
Am J Physiol Cell Physiol ; 323(2): C630-C639, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759443

RESUMO

Nonalcoholic fatty liver disease (NAFLD) has become the most common liver disease due to the global pandemic of metabolic diseases. Dysregulation of hepatic lipid metabolism plays a central role in the initiation and progression of NAFLD. With the advancement of lipidomics, an increasing number of lipid species and underlying mechanisms associating hepatic lipid components have been revealed. Therefore, the focus of this review is to highlight the links between hepatic lipid species and their mechanisms mediating the pathogenesis of NAFLD. We first summarized the interplay between NAFLD and hepatic lipid disturbances. Next, we focused on reviewing the role of saturated fatty acids, cholesterol, oxidized phospholipids, and their respective intermediates in the pathogenesis of NAFLD. The mechanisms by which monounsaturated fatty acids and other pro-resolving mediators exert protective effects are also addressed. Finally, we further discussed the implication of different analysis approaches in lipidomics. Evolving insights into the pathophysiology of NAFLD will provide the opportunity for drug development.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Ácidos Graxos/metabolismo , Humanos , Metabolismo dos Lipídeos , Lipidômica , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
7.
Chin Med Sci J ; 37(2): 103-117, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35256042

RESUMO

Objective To explore the association between lipid profiles and left ventricular hypertrophy in a Chinese general population. Methods We conducted a retrospective observational study to investigate the relationship between lipid markers [including triglycerides, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein (HDL) cholesterol, non-HDL-cholesterol, apolipoprotein A-I, apolipoprotein B, lipoprotein[a], and composite lipid profiles] and left ventricular hypertrophy. A total of 309,400 participants of two populations (one from Beijing and another from nationwide) who underwent physical examinations at different health management centers between 2009 and 2018 in China were included in the cross-sectional study. 7,475 participants who had multiple physical examinations and initially did not have left ventricular hypertrophy constituted a longitudinal cohort to analyze the association between lipid markers and the new-onset of left ventricular hypertrophy. Left ventricular hypertrophy was measured by echocardiography and defined as an end-diastolic thickness of the interventricular septum or left ventricle posterior wall > 11 mm. The Logistic regression model was used in the cross-sectional study. Coxmodel and Coxmodel with restricted cubic splines were used in the longitudinal cohort. Results In the cross-sectional study, for participants in the highest tertile of each lipid marker compared to the respective lowest, triglycerides [odds ratio (OR): 1.250, 95%CI: 1.060 to 1.474], HDL-cholesterol (OR: 0.780, 95%CI: 0.662 to 0.918), and lipoprotein(a) (OR: 1.311, 95%CI: 1.115 to 1.541) had an association with left ventricular hypertrophy. In the longitudinal cohort, for participants in the highest tertile of each lipid marker at the baseline compared to the respective lowest, triglycerides [hazard ratio (HR): 3.277, 95%CI: 1.720 to 6.244], HDL-cholesterol (HR: 0.516, 95%CI: 0.283 to 0.940), non-HDL-cholesterol (HR: 2.309, 95%CI: 1.296 to 4.112), apolipoprotein B (HR: 2.244, 95%CI: 1.251 to 4.032) showed an association with new-onset left ventricular hypertrophy. In the Coxmodel with forward stepwise selection, triglycerides were the only lipid markers entered into the final model. Conclusion Lipids levels, especially triglycerides, are associated with left ventricular hypertrophy. Controlling triglycerides level potentiate to be a strategy in harnessing cardiac remodeling but deserve to be further investigated.


Assuntos
Colesterol , Hipertrofia Ventricular Esquerda , Biomarcadores , HDL-Colesterol , Estudos Transversais , Humanos , Hipertrofia Ventricular Esquerda/epidemiologia , Estudos Retrospectivos , Triglicerídeos
8.
Hepatology ; 69(6): 2471-2488, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30748020

RESUMO

Nonalcoholic fatty liver disease (NAFLD) has become a worldwide epidemic. A large and growing unmet therapeutic need has inspired numerous studies in the field. Integrating the published genomic data available in the Gene Expression Omnibus (GEO) with NAFLD samples from rodents, we discovered that interferon regulatory factor 6 (IRF6) is significantly downregulated in high-fat diet (HFD)-induced fatty liver. In the current study, we identified IRF6 in hepatocytes as a protective factor in liver steatosis (LS). During HFD challenge, hepatic Irf6 was suppressed by promoter hypermethylation. Severity of HFD-induced LS was exacerbated in hepatocyte-specific Irf6 knockout mice, whereas hepatocyte-specific transgenic mice overexpressing Irf6 (IRF6-HTG) exhibited alleviated steatosis and metabolic disorder in response to HFD feeding. Mechanistic studies in vitro demonstrated that hepatocyte IRF6 directly binds to the promoter of the peroxisome proliferator-activated receptor γ (PPARγ) gene and subsequently halts the transcription of Pparγ and its target genes (e.g., genes that regulate lipogenesis and lipid acid uptake) under physiological conditions. Conclusion: Irf6 is downregulated by promoter hypermethylation upon metabolic stimulus exposure, which fail to inhibit Pparγ and its targets, driving abnormalities of lipid metabolism.


Assuntos
Regulação da Expressão Gênica , Fatores Reguladores de Interferon/genética , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , PPAR gama/genética , Animais , Metilação de DNA/genética , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Regulação para Baixo , Hepatócitos/citologia , Humanos , Fatores Reguladores de Interferon/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Distribuição Aleatória , Sensibilidade e Especificidade
9.
Circulation ; 137(14): 1486-1504, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29229612

RESUMO

BACKGROUND: Cardiac hypertrophy and its resultant heart failure are among the most common causes of mortality worldwide. Abnormal protein degradation, especially the impaired lysosomal degradation of large organelles and membrane proteins, is involved in the progression of cardiac hypertrophy. However, the underlying mechanisms have not been fully elucidated. METHODS: We investigated cardiac transmembrane BAX inhibitor motif containing 1 (TMBIM1) mRNA and protein expression levels in samples from patients with heart failure and mice with aortic banding (AB)-induced cardiac hypertrophy. We generated cardiac-specific Tmbim1 knockout mice and cardiac-specific Tmbim1-overexpressing transgenic mice and then challenged them with AB surgery. We used microarray, confocal image, and coimmunoprecipitation analyses to identify the downstream targets of TMBIM1 in cardiac hypertrophy. Tmbim1/Tlr4 double-knockout mice were generated to investigate whether the effects of TMBIM1 on cardiac hypertrophy were Toll-like receptor 4 (TLR4) dependent. Finally, lentivirus-mediated TMBIM1 overexpression in a monkey AB model was performed to evaluate the therapeutic potential of TMBIM1. RESULTS: TMBIM1 expression was significantly downregulated on hypertrophic stimuli in both human and mice heart samples. Silencing cardiac Tmbim1 aggravated AB-induced cardiac hypertrophy. This effect was blunted by Tmbim1 overexpression. Transcriptome profiling revealed that the TLR4 signaling pathway was disrupted dramatically by manipulation of Tmbim1. The effects of TMBIM1 on cardiac hypertrophy were shown to be dependent on TLR4 in double-knockout mice. Fluorescent staining indicated that TMBIM1 promoted the lysosome-mediated degradation of activated TLR4. Coimmunoprecipitation assays confirmed that TMBIM1 directly interacted with tumor susceptibility gene 101 via a PTAP motif and accelerated the formation of multivesicular bodies that delivered TLR4 to the lysosomes. Finally, lentivirus-mediated TMBIM1 overexpression reversed AB-induced cardiac hypertrophy in monkeys. CONCLUSIONS: TMBIM1 protects against pathological cardiac hypertrophy through promoting the lysosomal degradation of activated TLR4. Our findings reveal the central role of TMBIM1 as a multivesicular body regulator in the progression of pathological cardiac hypertrophy, as well as the role of vesicle trafficking in signaling regulation during cardiac hypertrophy. Moreover, targeting TMBIM1 could be a novel therapeutic strategy for treating cardiac hypertrophy and heart failure.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Cardiomegalia/patologia , Insuficiência Cardíaca/patologia , Motivos de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Haplorrinos , Humanos , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
10.
Clin Sci (Lond) ; 130(10): 813-28, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26884348

RESUMO

TRIM32 (tripartite motif 32) is widely accepted to be an E3 ligase that interacts with and eventually ubiquitylates multiple substrates. TRIM32 mutants have been associated with LGMD-2H (limb girdle muscular dystrophy 2H). However, whether TRIM32 is involved in cardiac hypertrophy induced by biomechanical stresses and neurohumoral mediators remains unclear. We generated mice and isolated NRCMs (neonatal rat cardiomyocytes) that overexpressed or were deficient in TRIM32 to investigate the effect of TRIM32 on AB (aortic banding) or AngII (angiotensin II)-mediated cardiac hypertrophy. Echocardiography and both pathological and molecular analyses were used to determine the extent of cardiac hypertrophy and subsequent fibrosis. Our results showed that overexpression of TRIM32 in the heart significantly alleviated the hypertrophic response induced by pressure overload, whereas TRIM32 deficiency dramatically aggravated pathological cardiac remodelling. Similar results were also found in cultured NRCMs incubated with AngII. Mechanistically, the present study suggests that TRIM32 exerts cardioprotective action by interruption of Akt- but not MAPK (mitogen-dependent protein kinase)-dependent signalling pathways. Additionally, inactivation of Akt by LY294002 offset the exacerbated hypertrophic response induced by AB in TRIM32-deficient mice. In conclusion, the present study indicates that TRIM32 plays a protective role in AB-induced pathological cardiac remodelling by blocking Akt-dependent signalling. Therefore TRIM32 could be a novel therapeutic target for the prevention of cardiac hypertrophy and heart failure.


Assuntos
Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Angiotensina II/metabolismo , Animais , Cardiomegalia/genética , Cardiomegalia/prevenção & controle , Diferenciação Celular/fisiologia , Células Cultivadas , Ecocardiografia/métodos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/prevenção & controle , Humanos , Masculino , Camundongos Knockout , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética
11.
Clin Sci (Lond) ; 129(2): 129-45, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25751394

RESUMO

Mindin/spondin 2, an extracellular matrix (ECM) component that belongs to the thrombospondin type 1 (TSR) class of molecules, plays prominent roles in the regulation of inflammatory responses, angiogenesis and metabolic disorders. Our most recent studies indicated that mindin is largely involved in the initiation and development of cardiac and cerebrovascular diseases [Zhu et al. (2014) J. Hepatol. 60, 1046-1054; Bian et al. (2012) J. Mol. Med. 90, 895-910; Wang et al. (2013) Exp. Neurol. 247, 506-516; Yan et al. (2011) Cardiovasc. Res. 92, 85-94]. However, the regulatory functions of mindin in neointima formation remain unclear. In the present study, mindin expression was significantly down-regulated in platelet-derived growth factor-BB (PDGF-BB)-stimulated vascular smooth muscle cells (VSMCs) and wire injury-stimulated vascular tissue. Using a gain-of-function approach, overexpression of mindin in VSMCs exhibited strong anti-proliferative and anti-migratory effects on VSMCs, whereas significant suppression of intimal hyperplasia was observed in transgenic (TG) mice expressing mindin specifically in smooth muscle cells (SMCs). These mice exhibited blunted VSMC proliferation, migration and phenotypic switching. Conversely, deletion of mindin dramatically exacerbated neointima formation in a wire-injury mouse model, which was further confirmed in a balloon injury-induced vascular lesion model using a novel mindin-KO (knockout) rat strain. From a mechanistic standpoint, the AKT (Protein Kinase B)-GSK3ß (glycogen synthase kinase 3ß)/mTOR (mammalian target of rapamycin)-FOXO3A (forkhead box O)-FOXO1 signalling axis is responsible for the regulation of mindin during intimal thickening. Interestingly, an AKT inhibitor largely reversed mindin-KO-induced aggravated hyperplasia, suggesting that mindin-mediated neointima formation is AKT-dependent. Taken together, our findings demonstrate that mindin protects against vascular hyperplasia by suppression of abnormal VSMC proliferation, migration and phenotypic switching in an AKT-dependent manner. Up-regulation of mindin might represent an effective therapy for vascular-remodelling-related diseases.


Assuntos
Lesões das Artérias Carótidas/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima , Animais , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/deficiência , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica , Genótipo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Transdução de Sinais , Fatores de Tempo
12.
Am J Hypertens ; 37(3): 230-238, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37864839

RESUMO

BACKGROUND: Increased reactive oxygen species (ROS) and oxidative stress response lead to cardiomyocyte hypertrophy and apoptosis, which play crucial roles in the pathogenesis of heart failure. The purpose of current research was to explore the role of antioxidant N-acetylcysteine (NAC) on cardiomyocyte dysfunction and the underlying molecular mechanisms. METHODS AND RESULTS: Compared with control group without NAC treatment, NAC dramatically inhibited the cell size of primary cultured neonatal rat cardiomyocytes (NRCMs) tested by immunofluorescence staining and reduced the expression of representative markers associated with hypertrophic, fibrosis and apoptosis subjected to phenylephrine administration examined by reverse transcription-polymerase chain reaction (RT-PCR) and western blot. Moreover, enhanced ROS expression was attenuated, whereas activities of makers related to oxidative stress response examined by individual assay Kits, including total antioxidation capacity (T-AOC), glutathione peroxidase (GSH-Px), and primary antioxidant enzyme Superoxide dismutase (SOD) were induced by NAC treatment in NRCMs previously treated with phenylephrine. Mechanistically, we noticed that the protein expression levels of phosphorylated phosphatidylinositol 3-kinase (PI3K) and AKT were increased by NAC stimulation. More importantly, we identified that the negative regulation of NAC in cardiomyocyte dysfunction was contributed by PI3K/AKT signaling pathway through further utilization of PI3K/AKT inhibitor (LY294002) or agonist (SC79). CONCLUSIONS: Collected, NAC could attenuate cardiomyocyte dysfunction subjected to phenylephrine, partially by regulating the ROS-induced PI3K/AKT-dependent signaling pathway.


Assuntos
Acetilcisteína , Fosfatidilinositol 3-Quinase , Ratos , Animais , Fosfatidilinositol 3-Quinase/metabolismo , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Fenilefrina/farmacologia , Transdução de Sinais , Estresse Oxidativo , Apoptose
13.
Sci Rep ; 14(1): 3269, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332169

RESUMO

Continuous monitoring of cardiac motions has been expected to provide essential cardiac physiology information on cardiovascular functioning. A fiber-optic micro-vibration sensing system (FO-MVSS) makes it promising. This study aimed to explore the correlation between Ballistocardiography (BCG) waveforms, measured using an FO-MVSS, and myocardial valve activity during the systolic and diastolic phases of the cardiac cycle in participants with normal cardiac function and patients with congestive heart failure (CHF). A high-sensitivity FO-MVSS acquired continuous BCG recordings. The simultaneous recordings of BCG and electrocardiogram (ECG) signals were obtained from 101 participants to examine their correlation. BCG, ECG, and intracavitary pressure signals were collected from 6 patients undergoing cardiac catheter intervention to investigate BCG waveforms and cardiac cycle phases. Tissue Doppler imaging (TDI) measured cardiac time intervals in 51 participants correlated with BCG intervals. The BCG recordings were further validated in 61 CHF patients to assess cardiac parameters by BCG. For heart failure evaluation machine learning was used to analyze BCG-derived cardiac parameters. Significant correlations were observed between cardiac physiology parameters and BCG's parameters. Furthermore, a linear relationship was found betwen IJ amplitude and cardiac output (r = 0.923, R2 = 0.926, p < 0.001). Machine learning techniques, including K-Nearest Neighbors (KNN), Decision Tree Classifier (DTC), Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), and XGBoost, respectively, demonstrated remarkable performance. They all achieved average accuracy and AUC values exceeding 95% in a five-fold cross-validation approach. We establish an electromagnetic-interference-free and non-contact method for continuous monitoring of the cardiac cycle and myocardial contractility and measure the different phases of the cardiac cycle. It presents a sensitive method for evaluating changes in both cardiac contraction and relaxation in the context of heart failure assessment.


Assuntos
Balistocardiografia , Insuficiência Cardíaca , Humanos , Balistocardiografia/métodos , Insuficiência Cardíaca/diagnóstico por imagem , Coração , Eletrocardiografia/métodos , Contração Miocárdica/fisiologia
14.
Metabolism ; 155: 155832, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38438106

RESUMO

Interleukin (IL)-6 has anti- and pro-inflammatory functions, controlled by IL-6 classic and trans-signaling, respectively. Differences in the downstream signaling mechanism between IL-6 classic and trans-signaling have not been identified. Here, we report that IL-6 activates glycolysis to regulate the inflammatory response. IL-6 regulates glucose metabolism by forming a complex containing signal-transducing activators of transcription 3 (STAT3), hexokinase 2 (HK2), and voltage-dependent anion channel 1 (VDAC1). The IL-6 classic signaling directs glucose flux to oxidative phosphorylation (OxPhos), while IL-6 trans-signaling directs glucose flux to anaerobic glycolysis. Classic IL-6 signaling promotes STAT3 translocation into mitochondria to interact with pyruvate dehydrogenase kinase-1 (PDK1), leading to pyruvate dehydrogenase α (PDHA) dissociation from PDK1. As a result, PDHA is dephosphorylated, and STAT3 is phosphorylated at Ser727. By contrast, IL-6 trans-signaling promotes the interaction of sirtuin 2 (SIRT2) and lactate dehydrogenase A (LDHA), leading to the dissociation of STAT3 from SIRT2. As a result, LDHA is deacetylated, and STAT3 is acetylated and phosphorylated at Tyr705. IL-6 classic signaling promotes the differentiation of regulatory T cells via the PDK1/STAT3/PDHA axis, whereas IL-6 trans-signaling promotes the differentiation of Th17 cells via the SIRT2/STAT3/LDHA axis. Conclusion: IL-6 classic signaling generates anti-inflammatory functions by shifting energy metabolism to OxPhos, while IL-6 trans-signaling generates pro-inflammatory functions by shifting energy metabolism to anaerobic glycolysis.


Assuntos
Glucose , Interleucina-6 , Piruvato Desidrogenase Quinase de Transferência de Acetil , Fator de Transcrição STAT3 , Transdução de Sinais , Interleucina-6/metabolismo , Glucose/metabolismo , Animais , Transdução de Sinais/fisiologia , Fator de Transcrição STAT3/metabolismo , Camundongos , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Glicólise/fisiologia , Humanos , Inflamação/metabolismo , Fosforilação Oxidativa , Hexoquinase/metabolismo , Fosforilação , Camundongos Endogâmicos C57BL , Reprogramação Metabólica
15.
J Am Heart Assoc ; 12(17): e028185, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37642020

RESUMO

Background Pathological cardiac hypertrophy is a major cause of heart failure morbidity. The complex mechanism of intermolecular interactions underlying the pathogenesis of cardiac hypertrophy has led to a lack of development and application of therapeutic methods. Methods and Results Our study provides the first evidence that TRAF4, a member of the tumor necrosis factor receptor-associated factor (TRAF) family, acts as a promoter of cardiac hypertrophy. Here, Western blotting assays demonstrated that TRAF4 is upregulated in cardiac hypertrophy. Additionally, TRAF4 deletion inhibits the development of cardiac hypertrophy in a mouse model after transverse aortic constriction surgery, whereas its overexpression promotes phenylephrine stimulation-induced cardiomyocyte hypertrophy in primary neonatal rat cardiomyocytes. Mechanistically, RNA-seq analysis revealed that TRAF4 promoted the activation of the protein kinase B pathway during cardiac hypertrophy. Moreover, we found that inhibition of protein kinase B phosphorylation rescued the aggravated cardiomyocyte hypertrophic phenotypes caused by TRAF4 overexpression in phenylephrine-treated neonatal rat cardiomyocytes, suggesting that TRAF4 may regulate cardiac hypertrophy in a protein kinase B-dependent manner. Conclusions Our results revealed the regulatory function of TRAF4 in cardiac hypertrophy, which may provide new insights into developing therapeutic and preventive targets for this disease.


Assuntos
Insuficiência Cardíaca , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Ratos , Fator 4 Associado a Receptor de TNF , Fenilefrina/farmacologia , Cardiomegalia
16.
Atherosclerosis ; 372: 1-9, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37004300

RESUMO

BACKGROUND AND AIMS: The distribution of lipoprotein(a) [Lp(a)] has not been well-studied in a large population in China. The relationship between Lp(a) and carotid atherosclerosis remains undefined. In this study, we aimed to investigate the distribution of Lp(a) levels and to assess their association with carotid arteriopathy in China. METHODS: In this cross-sectional study, 411,634 adults with Lp(a) measurements from 22 health check-up centers were used to investigate Lp(a) distribution in China. Among participants with Lp(a) data, carotid ultrasound was performed routinely at seven health check-up centers covering 75,305 subjects. Carotid intima-media thickness (cIMT) and carotid plaque were used as surrogate biomarkers of carotid arteriopathy. The multivariate logistic regression model was applied to evaluate the association of increased Lp(a) levels with carotid arteriopathy. RESULTS: The distribution of Lp(a) concentrations was right-skewed, with a median concentration of 10.60 mg/dL. The proportions of Lp(a) levels ≥30 mg/dL and ≥50 mg/dL were 16.75% and 7.10%, respectively. The median Lp(a) level was higher in females individuals in northern China, and increased with age. Spearman's analysis revealed weak correlations between the Lp(a) concentration as a continuous variable and other lipid profiles. The multiple logistic regression analysis showed that participants with Lp(a) levels ≥50 mg/dL had an increased risk of cIMT ≥1.0 mm (OR = 1.138, 95% CI, 1.071-1.208) and carotid plaque (OR = 1.296, 95% CI, 1.219-1.377) compared with those with Lp(a) levels <50 mg/dL. CONCLUSIONS: This is the first study of the Lp(a) distribution in a large population in China. Our findings revealed a positive association between elevated Lp(a) levels (≥50 mg/dL) and increased prevalence of carotid atherosclerosis, which implies an increased risk of cardiovascular disease in the future.


Assuntos
Doenças das Artérias Carótidas , Placa Aterosclerótica , Adulto , Feminino , Humanos , Lipoproteína(a) , Espessura Intima-Media Carotídea , Estudos Transversais , População do Leste Asiático , Doenças das Artérias Carótidas/epidemiologia , Placa Aterosclerótica/complicações , Fatores de Risco
17.
JACC Clin Electrophysiol ; 9(8 Pt 1): 1354-1367, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37086230

RESUMO

BACKGROUND: Electrical stimulation of the left stellate ganglion (LSG) can evoke ventricular arrhythmias (VAs) that originate from the right ventricular outflow tract (RVOT). The involvement of pulmonary artery innervation is unclear. OBJECTIVES: This study investigated the effects of selective pulmonary artery denervation (PADN) on blood pressure (BP), sympathetic activity, ventricular effective refractory period (ERP), and the incidence of VAs induced by LSG stimulation in canines. METHODS: Radiofrequency ablation with basic anesthetic monitoring was used to induce PADN in canines. In Protocol 1 (n = 11), heart rate variability, serum norepinephrine and angiotensin-II levels, BP changes and ventricular ERP in response to LSG stimulation were measured before and after PADN. In Protocol 2 (n = 8), the incidence of VAs induced by LSG stimulation was calculated before and after PADN in a canine model of complete atrioventricular block. In addition, sympathetic nerves in the excised pulmonary arteries were immunohistochemically stained with tyrosine hydroxylase. RESULTS: The low-frequency components of heart rate variability, serum norepinephrine and angiotensin-II levels were remarkably decreased post-PADN. Systolic BP elevation and RVOT ERP shortening induced by LSG stimulation were mitigated by PADN. The number of RVOT-premature ventricular contractions as well as RVOT tachycardia episodes and duration induced by LSG stimulation were significantly reduced after PADN. In addition, a large number of tyrosine hydroxylase-immunoreactive nerve fibers were located in the anterior wall of the pulmonary artery. CONCLUSIONS: PADN ameliorated RVOT ERP shortening, and RVOT-VAs induced by LSG stimulation by inhibiting cardiac sympathetic nerve activity.


Assuntos
Artéria Pulmonar , Gânglio Estrelado , Animais , Cães , Tirosina 3-Mono-Oxigenase , Arritmias Cardíacas , Norepinefrina , Denervação/efeitos adversos , Angiotensinas
18.
J Mol Med (Berl) ; 100(12): 1721-1739, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36396746

RESUMO

Metabolic cardiomyopathy is an emerging cause of heart failure in patients with obesity, insulin resistance, and diabetes. It is characterized by impaired myocardial metabolic flexibility, intramyocardial triglyceride accumulation, and lipotoxic damage in association with structural and functional alterations of the heart, unrelated to hypertension, coronary artery disease, and other cardiovascular diseases. Oxidative stress plays an important role in the development and progression of metabolic cardiomyopathy. Mitochondria are the most significant sources of reactive oxygen species (ROS) in cardiomyocytes. Disturbances in myocardial substrate metabolism induce mitochondrial adaptation and dysfunction, manifested as a mismatch between mitochondrial fatty acid oxidation and the electron transport chain (ETC) activity, which facilitates ROS production within the ETC components. In addition, non-ETC sources of mitochondrial ROS, such as ß-oxidation of fatty acids, may also produce a considerable quantity of ROS in metabolic cardiomyopathy. Augmented ROS production in cardiomyocytes can induce a variety of effects, including the programming of myocardial energy substrate metabolism, modulation of metabolic inflammation, redox modification of ion channels and transporters, and cardiomyocyte apoptosis, ultimately leading to the structural and functional alterations of the heart. Based on the above mechanistic views, the present review summarizes the current understanding of the mechanisms underlying metabolic cardiomyopathy, focusing on the role of oxidative stress.


Assuntos
Cardiomiopatias , Humanos , Espécies Reativas de Oxigênio/metabolismo , Cardiomiopatias/etiologia , Estresse Oxidativo , Metabolismo Energético , Miocárdio/metabolismo
19.
Front Endocrinol (Lausanne) ; 13: 1007171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237179

RESUMO

Background and aims: The epidemiological characteristics of MAFLD and its relationship with atrial fibrillation (AF) are limited in China. Therefore, we explored the epidemiological characteristics of MAFLD from adults along with the association of MAFLD and 12-ECG diagnosed AF in a nationwide population from health check-up centers. Methods: This observational study used cross-sectional and longitudinal studies with 2,083,984 subjects from 2009 to 2017. Age-, sex-, and regional-standardized prevalence of MAFLD was estimated. Latent class analysis (LCA) was used to identify subclusters of MAFLD. Multivariable logistic regression and mixed-effects Cox regression models were used to analyze the relationship between MAFLD and AF. Results: The prevalence of MAFLD increased from 22.75% to 35.58% during the study period, with higher rates in males and populations with high BMI or resided in northern regions. The MAFLD population was clustered into three classes with different metabolic features by LCA. Notably, a high proportion of MAFLD patients in all clusters had overweight and prediabetes or diabetes. The MAFLD was significantly associated with a higher risk of AF in the cross-sectional study and in the longitudinal study. In addition, the coexistence of prediabetes or diabetes had the largest impact on subsequent AF. Conclusion: Our findings suggested a high prevalence of MAFLD and a high prevalence of other metabolic diseases in the MAFLD population, particularly overweight and glucose dysregulation. Moreover, MAFLD was associated with a significantly higher risk for existing and subsequent subclinical AF in the Chinese population.


Assuntos
Fibrilação Atrial , Diabetes Mellitus , Estado Pré-Diabético , Adulto , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/epidemiologia , China/epidemiologia , Estudos Transversais , Glucose , Humanos , Estudos Longitudinais , Masculino , Sobrepeso , Prevalência , Fatores de Risco
20.
Exp Ther Med ; 22(1): 714, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34007323

RESUMO

Morphine has been widely used for the treatment of pain and extensive studies have revealed a regulatory role for morphine in cell apoptosis. However, the molecular mechanisms underlying morphine-mediated apoptosis remain to be fully elucidated. The present study aimed to investigate the effects of morphine on lipopolysaccharide (LPS)-induced bone marrow-derived macrophage (BMDM) apoptosis and to determine the role of the peroxisome proliferator-activated receptor (PPAR)γ signaling pathway in this process. BMDMs were isolated from BALB/c mice and stimulated with LPS. Hoechst 33342 staining and flow cytometric analysis were performed to evaluate the effects of morphine on LPS-induced apoptosis of BMDMs. Caspase activity assays were used to determine the involvement of the apoptosis pathway. The expression levels of caspase-3, caspase-8, caspase-9 and PPARγ were analyzed using western blotting. Finally, GW9662, a specific PPARγ antagonist, was used to determine whether the regulatory effects of morphine on LPS-induced BMDM apoptosis were PPARγ-dependent. The results of the present study revealed that morphine increased the apoptosis of LPS-stimulated BMDMs. Morphine upregulated the expression levels and activity of caspase-3 in LPS-stimulated BMDMs, but downregulated the expression levels and activity of caspase-8. Morphine treatment also upregulated LPS-induced PPARγ expression levels in BMDMs. Finally, the stimulatory effects of morphine on LPS-induced apoptosis and caspase-3/9 activation were markedly reduced by GW9662. In conclusion, the findings of the present study indicated that morphine significantly promoted LPS-induced BMDM apoptosis and caspase-3/9 activation. These results suggested that the intrinsic pathway of apoptosis may be involved in the proapoptotic effects of morphine on LPS-stimulated BMDMs, which may be dependent, at least partially, on PPARγ activation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA