Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Blood Press ; : 1-8, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26230147

RESUMO

During physical exercise, pulse transit time (PTT), expressed as the interval between ventricular electrical activity and peripheral pulse wave, may provide a surrogate estimate for blood pressure by the use of specific calibration procedures. The objective of this study was to determine systolic blood pressure (SBP) values derived from the PTT method and from an established method of non-invasive continuous blood pressure measurement based on the volume clamp technique, and to compare their agreement with sphygmomanometry during exercise tests. In 18 subjects, electrocardiogram (ECG) and finger-photoplethysmography were continuously recorded during maximal cycle exercise tests. Intermittent and continuous blood pressure measurements were simultaneously taken using automated sphygmomanometry and a Portapres Model-2 device, respectively. PTT was calculated for each ECG R-wave and the corresponding steepest upstroke slope in the photoplethysmogram, and was transformed to a continuous blood pressure estimate using multipoint nonlinear regression calibration based on the individual subject's sphygmomanometer readings. Bland-Altman limits of agreement between PTT-derived SBP estimates and sphygmomanometer values were -24.7 to 24.1 mmHg, and between Portapres and sphygmomanometer SBP values were -42.0 to 70.1 mmHg. For beat-to-beat SBP estimation during exercise, PTT measurement combined with multipoint nonlinear regression calibration based on intermittent sphygmomanometry may be an alternative to volume clamp devices.

2.
Blood Press ; 24(6): 353-60, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26286887

RESUMO

During physical exercise, pulse transit time (PTT), expressed as the interval between ventricular electrical activity and peripheral pulse wave, may provide a surrogate estimate for blood pressure by the use of specific calibration procedures. The objective of this study was to determine systolic blood pressure (SBP) values derived from the PTT method and from an established method of non-invasive continuous blood pressure measurement based on the volume clamp technique, and to compare their agreement with sphygmomanometry during exercise tests. In 18 subjects, electrocardiogram (ECG) and finger-photoplethysmography were continuously recorded during maximal cycle exercise tests. Intermittent and continuous blood pressure measurements were simultaneously taken using automated sphygmomanometry and a Portapres Model-2 device, respectively. PTT was calculated for each ECG R-wave and the corresponding steepest upstroke slope in the photoplethysmogram, and was transformed to a continuous blood pressure estimate using multipoint nonlinear regression calibration based on the individual subject's sphygmomanometer readings. Bland-Altman limits of agreement between PTT-derived SBP estimates and sphygmomanometer values were -24.7 to 24.1 mmHg, and between Portapres and sphygmomanometer SBP values were -42.0 to 70.1 mmHg. For beat-to-beat SBP estimation during exercise, PTT measurement combined with multipoint nonlinear regression calibration based on intermittent sphygmomanometry may be an alternative to volume clamp devices.


Assuntos
Monitores de Pressão Arterial , Pressão Sanguínea/fisiologia , Eletrocardiografia , Exercício Físico/fisiologia , Análise de Onda de Pulso , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA