Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 35(13-14): 1005-1019, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34168039

RESUMO

N6-methyladenosine (m6A) is an abundant internal RNA modification, influencing transcript fate and function in uninfected and virus-infected cells. Installation of m6A by the nuclear RNA methyltransferase METTL3 occurs cotranscriptionally; however, the genomes of some cytoplasmic RNA viruses are also m6A-modified. How the cellular m6A modification machinery impacts coronavirus replication, which occurs exclusively in the cytoplasm, is unknown. Here we show that replication of SARS-CoV-2, the agent responsible for the COVID-19 pandemic, and a seasonal human ß-coronavirus HCoV-OC43, can be suppressed by depletion of METTL3 or cytoplasmic m6A reader proteins YTHDF1 and YTHDF3 and by a highly specific small molecule METTL3 inhibitor. Reduction of infectious titer correlates with decreased synthesis of viral RNAs and the essential nucleocapsid (N) protein. Sites of m6A modification on genomic and subgenomic RNAs of both viruses were mapped by methylated RNA immunoprecipitation sequencing (meRIP-seq). Levels of host factors involved in m6A installation, removal, and recognition were unchanged by HCoV-OC43 infection; however, nuclear localization of METTL3 and cytoplasmic m6A readers YTHDF1 and YTHDF2 increased. This establishes that coronavirus RNAs are m6A-modified and host m6A pathway components control ß-coronavirus replication. Moreover, it illustrates the therapeutic potential of targeting the m6A pathway to restrict coronavirus reproduction.


Assuntos
Coronavirus Humano OC43/fisiologia , Processamento Pós-Transcricional do RNA/genética , SARS-CoV-2/fisiologia , Replicação Viral/genética , Adenosina/análogos & derivados , Adenosina/genética , Adenosina/metabolismo , Linhagem Celular , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Regulação da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Proteínas do Nucleocapsídeo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Replicação Viral/efeitos dos fármacos
2.
Proc Natl Acad Sci U S A ; 121(11): e2312874121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38451943

RESUMO

The success of bacterial pathogens depends on the coordinated expression of virulence determinants. Regulatory circuits that drive pathogenesis are complex, multilayered, and incompletely understood. Here, we reveal that alterations in tRNA modifications define pathogenic phenotypes in the opportunistic pathogen Pseudomonas aeruginosa. We demonstrate that the enzymatic activity of GidA leads to the introduction of a carboxymethylaminomethyl modification in selected tRNAs. Modifications at the wobble uridine base (cmnm5U34) of the anticodon drives translation of transcripts containing rare codons. Specifically, in P. aeruginosa the presence of GidA-dependent tRNA modifications modulates expression of genes encoding virulence regulators, leading to a cellular proteomic shift toward pathogenic and well-adapted physiological states. Our approach of profiling the consequences of chemical tRNA modifications is general in concept. It provides a paradigm of how environmentally driven tRNA modifications govern gene expression programs and regulate phenotypic outcomes responsible for bacterial adaption to challenging habitats prevailing in the host niche.


Assuntos
Proteômica , Pseudomonas aeruginosa , Virulência/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Anticódon , Bactérias/metabolismo
3.
Genes Dev ; 32(23-24): 1472-1484, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30463905

RESUMO

Modification of mRNA by N6-adenosine methylation (m6A) on internal bases influences gene expression in eukaryotes. How the dynamic genome-wide landscape of m6A-modified mRNAs impacts virus infection and host immune responses remains poorly understood. Here, we show that type I interferon (IFN) production triggered by dsDNA or human cytomegalovirus (HCMV) is controlled by the cellular m6A methyltrasferase subunit METTL14 and ALKBH5 demethylase. While METTL14 depletion reduced virus reproduction and stimulated dsDNA- or HCMV-induced IFNB1 mRNA accumulation, ALKBH5 depletion had the opposite effect. Depleting METTL14 increased both nascent IFNB1 mRNA production and stability in response to dsDNA. In contrast, ALKBH5 depletion reduced nascent IFNB1 mRNA production without detectably influencing IFN1B mRNA decay. Genome-wide transcriptome profiling following ALKBH5 depletion identified differentially expressed genes regulating antiviral immune responses, while METTL14 depletion altered pathways impacting metabolic reprogramming, stress responses, and aging. Finally, we determined that IFNB1 mRNA was m6A-modified within both the coding sequence and the 3' untranslated region (UTR). This establishes that the host m6A modification machinery controls IFNß production triggered by HCMV or dsDNA. Moreover, it demonstrates that responses to nonmicrobial dsDNA in uninfected cells, which shape host immunity and contribute to autoimmune disease, are regulated by enzymes controlling m6A epitranscriptomic changes.


Assuntos
DNA/imunologia , Regulação da Expressão Gênica/genética , Sistema Imunitário/enzimologia , Imunidade Inata/genética , Interferon beta/genética , Metiltransferases/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Citomegalovirus/imunologia , Perfilação da Expressão Gênica , Humanos , Interferon beta/metabolismo , Estabilidade de RNA/genética , Células Vero , Replicação Viral/genética
4.
J Virol ; 98(4): e0201523, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38451083

RESUMO

Herpes simplex virus 1 (HSV-1) transcription is restricted in latently infected neurons and the genomes are in mostly silenced chromatin, whereas all viral genes are transcribed in lytically infected cells, in which the genomes are dynamically chromatinized. Epigenetic regulation modulates HSV-1 transcription during lytic, latent, and reactivating infections but the precise mechanisms are not fully defined. Nucleosomes are dynamic: they slide, breathe, assemble, and disassemble. We and others have proposed that the most dynamic HSV-1 chromatin is transcriptionally competent, whereas the least dynamic is silenced. However, the mechanisms yielding the unusually dynamic viral chromatin remain unknown. Histone variants affect nucleosome dynamics. The dynamics of H2A, H2A.X, and macroH2A were enhanced in infected cells, whereas those of H2A.B were uniquely decreased. We constructed stably transduced cells expressing tagged histone H2A, H2A.B, macroH2A, or H2B, which assembles the H2A/H2B nucleosome dimers with all H2A variants. All H2A variants, as well as ectopic and endogenous H2B were assembled into HSV-1 chromatin evenly throughout the genome but canonical H2A was relatively depleted whereas H2A.B was enriched, particularly in the most dynamic viral chromatin. When viral transcription and DNA replication were restricted, H2A.B became as depleted from the viral chromatin through the entire genome as H2A. We propose that lytic HSV-1 nucleosomes are enriched in the dynamic variant H2A.B/H2B dimers to promote HSV-1 chromatin dynamics and transcriptional competency and conclude that the dynamics of HSV-1 chromatin are determined in part by the H2A variants. IMPORTANCE: Herpes simplex virus 1 (HSV-1) transcription is epigenetically regulated during latent and lytic infections, and epigenetic inhibitors have been proposed as potential antiviral drugs to modulate latency and reactivation. However, the detailed epigenetic mechanisms of regulation of HSV-1 transcription have not been fully characterized and may differ from those regulating cellular transcription. Whereas lytic HSV-1 chromatin is unusually dynamic, latent silenced HSV-1 chromatin is not. The mechanisms resulting in the unique dynamics of the lytic chromatin remain unknown. Here we identify the enrichment of the highly dynamic histone 2A variant H2A in the most dynamic viral chromatin, which provides a mechanistic understanding of its unique dynamics. Future work to identify the mechanisms of enrichment in H2A.B on the viral chromatin may identify novel druggable epigenetic regulators that modulate HSV-1 latency and reactivation.


Assuntos
Cromatina , Epigênese Genética , Regulação Viral da Expressão Gênica , Herpesvirus Humano 1 , Histonas , Transcrição Viral , Replicação Viral , Cromatina/genética , Cromatina/metabolismo , Inativação Gênica , Variação Genética , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/crescimento & desenvolvimento , Herpesvirus Humano 1/fisiologia , Histonas/genética , Histonas/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Ativação Viral , Latência Viral , Humanos , Animais , Células Vero , Células HEK293
5.
J Virol ; 98(4): e0185823, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38445887

RESUMO

Most individuals are latently infected with herpes simplex virus type 1 (HSV-1), and it is well-established that HSV-1 establishes latency in sensory neurons of peripheral ganglia. However, it was recently proposed that latent HSV-1 is also present in immune cells recovered from the ganglia of experimentally infected mice. Here, we reanalyzed the single-cell RNA sequencing (scRNA-Seq) data that formed the basis for that conclusion. Unexpectedly, off-target priming in 3' scRNA-Seq experiments enabled the detection of non-polyadenylated HSV-1 latency-associated transcript (LAT) intronic RNAs. However, LAT reads were near-exclusively detected in mixed populations of cells undergoing cell death. Specific loss of HSV-1 LAT and neuronal transcripts during quality control filtering indicated widespread destruction of neurons, supporting the presence of contaminating cell-free RNA in other cells following tissue processing. In conclusion, the reported detection of latent HSV-1 in non-neuronal cells is best explained using compromised scRNA-Seq datasets.IMPORTANCEMost people are infected with herpes simplex virus type 1 (HSV-1) during their life. Once infected, the virus generally remains in a latent (silent) state, hiding within the neurons of peripheral ganglia. Periodic reactivation (reawakening) of the virus may cause fresh diseases such as cold sores. A recent study using single-cell RNA sequencing (scRNA-Seq) proposed that HSV-1 can also establish latency in the immune cells of mice, challenging existing dogma. We reanalyzed the data from that study and identified several flaws in the methodologies and analyses performed that invalidate the published conclusions. Specifically, we showed that the methodologies used resulted in widespread destruction of neurons which resulted in the presence of contaminants that confound the data analysis. We thus conclude that there remains little to no evidence for HSV-1 latency in immune cells.


Assuntos
Artefatos , Gânglios Sensitivos , Herpesvirus Humano 1 , Células Receptoras Sensoriais , Análise de Sequência de RNA , Análise da Expressão Gênica de Célula Única , Latência Viral , Animais , Camundongos , Morte Celular , Conjuntos de Dados como Assunto , Gânglios Sensitivos/imunologia , Gânglios Sensitivos/patologia , Gânglios Sensitivos/virologia , Herpes Simples/imunologia , Herpes Simples/patologia , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/isolamento & purificação , MicroRNAs/análise , MicroRNAs/genética , Reprodutibilidade dos Testes , RNA Viral/análise , RNA Viral/genética , Células Receptoras Sensoriais/patologia , Células Receptoras Sensoriais/virologia
6.
EMBO Rep ; 24(12): e56327, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37846490

RESUMO

Unlike most RNA and DNA viruses that broadly stimulate mRNA decay and interfere with host gene expression, human cytomegalovirus (HCMV) extensively remodels the host translatome without producing an mRNA decay enzyme. By performing a targeted loss-of-function screen in primary human fibroblasts, we here identify the host CCR4-NOT deadenylase complex members CNOT1 and CNOT3 as unexpected pro-viral host factors that selectively regulate HCMV reproduction. We find that the scaffold subunit CNOT1 is specifically required for late viral gene expression and genome-wide host responses in CCR4-NOT-disrupted cells. By profiling poly(A)-tail lengths of individual HCMV and host mRNAs using nanopore direct RNA sequencing, we reveal poly(A)-tails of viral messages to be markedly longer than those of cellular mRNAs and significantly less sensitive to CCR4-NOT disruption. Our data establish that mRNA deadenylation by host CCR4-NOT is critical for productive HCMV replication and define a new mechanism whereby herpesvirus infection subverts cellular mRNA metabolism to remodel the gene expression landscape of the infected cell. Moreover, we expose an unanticipated host factor with potential to become a therapeutic anti-HCMV target.


Assuntos
Infecções por Herpesviridae , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CCR4/genética , Receptores CCR4/metabolismo
7.
PLoS Pathog ; 18(9): e1010797, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36095031

RESUMO

Adenovirus is a common human pathogen that relies on host cell processes for transcription and processing of viral RNA and protein production. Although adenoviral promoters, splice junctions, and polyadenylation sites have been characterized using low-throughput biochemical techniques or short read cDNA-based sequencing, these technologies do not fully capture the complexity of the adenoviral transcriptome. By combining Illumina short-read and nanopore long-read direct RNA sequencing approaches, we mapped transcription start sites and RNA cleavage and polyadenylation sites across the adenovirus genome. In addition to confirming the known canonical viral early and late RNA cassettes, our analysis of splice junctions within long RNA reads revealed an additional 35 novel viral transcripts that meet stringent criteria for expression. These RNAs include fourteen new splice junctions which lead to expression of canonical open reading frames (ORFs), six novel ORF-containing transcripts, and 15 transcripts encoding for messages that could alter protein functions through truncation or fusion of canonical ORFs. In addition, we detect RNAs that bypass canonical cleavage sites and generate potential chimeric proteins by linking distinct gene transcription units. Among these chimeric proteins we detected an evolutionarily conserved protein containing the N-terminus of E4orf6 fused to the downstream DBP/E2A ORF. Loss of this novel protein, E4orf6/DBP, was associated with aberrant viral replication center morphology and poor viral spread. Our work highlights how long-read sequencing technologies combined with mass spectrometry can reveal further complexity within viral transcriptomes and resulting proteomes.


Assuntos
Adenoviridae , RNA Viral , Adenoviridae/genética , DNA Complementar , Humanos , Fases de Leitura Aberta/genética , Proteoma/metabolismo , Splicing de RNA/genética , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sequência de RNA/métodos , Transcriptoma
8.
Curr Top Microbiol Immunol ; 438: 1-23, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34374828

RESUMO

This chapter first details the structure, organization and coding content of the VZV genome to provide a foundation on which the molecular evolution of the virus can be projected. We subsequently describe the evolution of molecular profiling approaches from restriction fragment length polymorphisms to single nucleotide polymorphism profiling to modern day high-throughput sequencing approaches. We describe how the application of these methodologies led to our current model of VZV phylogeograpy including the number and structure of geographic clades and the role of recombination in reshaping these.


Assuntos
Evolução Molecular , Herpesvirus Humano 3 , Herpesvirus Humano 3/genética , Genótipo , Recombinação Genética , Biologia Molecular
9.
EMBO Rep ; 23(2): e53543, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34842321

RESUMO

Single-cell RNA sequencing (scRNA-seq) is a powerful technique for dissecting the complexity of normal and diseased tissues, enabling characterization of cell diversity and heterogeneous phenotypic states in unprecedented detail. However, this technology has been underutilized for exploring the interactions between the host cell and viral pathogens in latently infected cells. Herein, we use scRNA-seq and single-molecule sensitivity fluorescent in situ hybridization (smFISH) technologies to investigate host single-cell transcriptome changes upon the reactivation of a human neurotropic virus, herpes simplex virus-1 (HSV-1). We identify the stress sensor growth arrest and DNA damage-inducible 45 beta (Gadd45b) as a critical antiviral host factor that regulates HSV-1 reactivation events in a subpopulation of latently infected primary neurons. We show that distinct subcellular localization of Gadd45b correlates with the viral late gene expression program, as well as the expression of the viral transcription factor, ICP4. We propose that a hallmark of a "successful" or "aborted" HSV-1 reactivation state in primary neurons is determined by a unique subcellular localization signature of the stress sensor Gadd45b.


Assuntos
Antígenos de Diferenciação/metabolismo , Herpesvirus Humano 1 , Neurônios/virologia , Ativação Viral , Latência Viral , Regulação da Expressão Gênica , Herpesvirus Humano 1/fisiologia , Humanos , Hibridização in Situ Fluorescente , Transcriptoma
10.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34282019

RESUMO

N6-methyladenosine (m6A) is the most abundant internal messenger RNA (mRNA) modification, contributing to the processing, stability, and function of methylated RNAs. Methylation occurs in the nucleus during pre-mRNA synthesis and requires a core methyltransferase complex consisting of METTL3, METTL14, and WTAP. During herpes simplex virus (HSV-1) infection, cellular gene expression is profoundly suppressed, allowing the virus to monopolize the host transcription and translation apparatus and antagonize antiviral responses. The extent to which HSV-1 uses or manipulates the m6A pathway is not known. Here, we show that, in primary fibroblasts, HSV-1 orchestrates a striking redistribution of the nuclear m6A machinery that progresses through the infection cycle. METTL3 and METTL14 are dispersed into the cytoplasm, whereas WTAP remains nuclear. Other regulatory subunits of the methyltransferase complex, along with the nuclear m6A-modified RNA binding protein YTHDC1 and nuclear demethylase ALKBH5, are similarly redistributed. These changes require ICP27, a viral regulator of host mRNA processing that mediates the nucleocytoplasmic export of viral late mRNAs. Viral gene expression is initially reduced by small interfering RNA (siRNA)-mediated inactivation of the m6A methyltransferase but becomes less impacted as the infection advances. Redistribution of the nuclear m6A machinery is accompanied by a wide-scale reduction in the installation of m6A and other RNA modifications on both host and viral mRNAs. These results reveal a far-reaching mechanism by which HSV-1 subverts host gene expression to favor viral replication.


Assuntos
Herpesvirus Humano 1/fisiologia , Metiltransferases/metabolismo , RNA Mensageiro/metabolismo , Replicação Viral/fisiologia , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Chlorocebus aethiops , Regulação Enzimológica da Expressão Gênica , Humanos , Metiltransferases/genética , Interferência de RNA , Processamento Pós-Transcricional do RNA , Fatores de Processamento de RNA , RNA Mensageiro/genética , RNA-Seq/métodos , Células Vero
11.
J Virol ; 96(12): e0050822, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35608347

RESUMO

Understanding the molecular mechanisms of herpes simplex virus 1 (HSV-1) latent infection and reactivation in neurons requires the use of in vitro model systems. Establishing a quiescent infection in cultured neurons is problematic, as any infectious virus released can superinfect the cultures. Previous studies have used the viral DNA replication inhibitor acyclovir to prevent superinfection and promote latency establishment. Data from these previous models have shown that reactivation is biphasic, with an initial phase I expression of all classes of lytic genes, which occurs independently of histone demethylase activity and viral DNA replication but is dependent on the cell stress protein DLK. Here, we describe a new model system using HSV-1 Stayput-GFP, a reporter virus that is defective for cell-to-cell spread and establishes latent infections without the need for acyclovir. The establishment of a latent state requires a longer time frame than previous models using DNA replication inhibitors. This results in a decreased ability of the virus to reactivate using established inducers, and as such, a combination of reactivation triggers is required. Using this system, we demonstrate that biphasic reactivation occurs even when latency is established in the absence of acyclovir. Importantly, phase I lytic gene expression still occurs in a histone demethylase and viral DNA replication-independent manner and requires DLK activity. These data demonstrate that the two waves of viral gene expression following HSV-1 reactivation are independent of secondary infection and not unique to systems that require acyclovir to promote latency establishment. IMPORTANCE Herpes simplex virus-1 (HSV-1) enters a latent infection in neurons and periodically reactivates. Reactivation manifests as a variety of clinical symptoms. Studying latency and reactivation in vitro is invaluable, allowing the molecular mechanisms behind both processes to be targeted by therapeutics that reduce the clinical consequences. Here, we describe a novel in vitro model system using a cell-to-cell spread-defective HSV-1, known as Stayput-GFP, which allows for the study of latency and reactivation at the single neuron level. We anticipate this new model system will be an incredibly valuable tool for studying the establishment and reactivation of HSV-1 latent infection in vitro. Using this model, we find that initial reactivation events are dependent on cellular stress kinase DLK but independent of histone demethylase activity and viral DNA replication. Our data therefore further validate the essential role of DLK in mediating a wave of lytic gene expression unique to reactivation.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Infecção Latente , MAP Quinase Quinase Quinases , Ativação Viral , Latência Viral , Aciclovir/farmacologia , Antivirais/farmacologia , Replicação do DNA , DNA Viral , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Histona Desmetilases/genética , Humanos , MAP Quinase Quinase Quinases/metabolismo , Replicação Viral
12.
Bioinformatics ; 38(11): 3113-3115, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35426900

RESUMO

MOTIVATION: The chemical modification of ribonucleotides regulates the structure, stability and interactions of RNAs. Profiling of these modifications using short-read (Illumina) sequencing techniques provides high sensitivity but low-to-medium resolution i.e. modifications cannot be assigned to specific transcript isoforms in regions of sequence overlap. An alternative strategy uses current fluctuations in nanopore-based long read direct RNA sequencing (DRS) to infer the location and identity of nucleotides that differ between two experimental conditions. While highly sensitive, these signal-level analyses require high-quality transcriptome annotations and thus are best suited to the study of model organisms. By contrast, the detection of RNA modifications in microbial organisms which typically have no or low-quality annotations requires an alternative strategy. Here, we demonstrate that signal fluctuations directly influence error rates during base-calling and thus provides an alternative approach for identifying modified nucleotides. RESULTS: DRUMMER (Detection of Ribonucleic acid Modifications Manifested in Error Rates) (i) utilizes a range of statistical tests and background noise correction to identify modified nucleotides with high confidence, (ii) operates with similar sensitivity to signal-level analysis approaches and (iii) correlates very well with orthogonal approaches. Using well-characterized DRS datasets supported by independent meRIP-Seq and miCLIP-Seq datasets we demonstrate that DRUMMER operates with high sensitivity and specificity. AVAILABILITY AND IMPLEMENTATION: DRUMMER is written in Python 3 and is available as open source in the GitHub repository: https://github.com/DepledgeLab/DRUMMER. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento por Nanoporos , Software , Análise de Sequência de RNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA/química , Nucleotídeos
13.
PLoS Pathog ; 17(11): e1010084, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34807956

RESUMO

Primary infection with varicella-zoster virus (VZV) causes varicella and the establishment of lifelong latency in sensory ganglion neurons. In one-third of infected individuals VZV reactivates from latency to cause herpes zoster, often complicated by difficult-to-treat chronic pain. Experimental infection of non-human primates with simian varicella virus (SVV) recapitulates most features of human VZV disease, thereby providing the opportunity to study the pathogenesis of varicella and herpes zoster in vivo. However, compared to VZV, the transcriptome and the full coding potential of SVV remains incompletely understood. Here, we performed nanopore direct RNA sequencing to annotate the SVV transcriptome in lytically SVV-infected African green monkey (AGM) and rhesus macaque (RM) kidney epithelial cells. We refined structures of canonical SVV transcripts and uncovered numerous RNA isoforms, splicing events, fusion transcripts and non-coding RNAs, mostly unique to SVV. We verified the expression of canonical and newly identified SVV transcripts in vivo, using lung samples from acutely SVV-infected cynomolgus macaques. Expression of selected transcript isoforms, including those located in the unique left-end of the SVV genome, was confirmed by reverse transcription PCR. Finally, we performed detailed characterization of the SVV homologue of the VZV latency-associated transcript (VLT), located antisense to ORF61. Analogous to VZV VLT, SVV VLT is multiply spliced and numerous isoforms are generated using alternative transcription start sites and extensive splicing. Conversely, low level expression of a single spliced SVV VLT isoform defines in vivo latency. Notably, the genomic location of VLT core exons is highly conserved between SVV and VZV. This work thus highlights the complexity of lytic SVV gene expression and provides new insights into the molecular biology underlying lytic and latent SVV infection. The identification of the SVV VLT homolog further underlines the value of the SVV non-human primate model to develop new strategies for prevention of herpes zoster.


Assuntos
Infecções por Herpesviridae/genética , Doenças dos Macacos/genética , Transcriptoma , Varicellovirus/genética , Proteínas Virais/genética , Latência Viral , Animais , Variações do Número de Cópias de DNA , Infecções por Herpesviridae/virologia , Macaca mulatta , Doenças dos Macacos/virologia , Splicing de RNA
14.
Proc Natl Acad Sci U S A ; 116(12): 5693-5698, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30819890

RESUMO

Recent sequencing efforts have led to estimates of human cytomegalovirus (HCMV) genome-wide intrahost diversity that rival those of persistent RNA viruses [Renzette N, Bhattacharjee B, Jensen JD, Gibson L, Kowalik TF (2011) PLoS Pathog 7:e1001344]. Here, we deep sequence HCMV genomes recovered from single and longitudinally collected blood samples from immunocompromised children to show that the observations of high within-host HCMV nucleotide diversity are explained by the frequent occurrence of mixed infections caused by genetically distant strains. To confirm this finding, we reconstructed within-host viral haplotypes from short-read sequence data. We verify that within-host HCMV nucleotide diversity in unmixed infections is no greater than that of other DNA viruses analyzed by the same sequencing and bioinformatic methods and considerably less than that of human immunodeficiency and hepatitis C viruses. By resolving individual viral haplotypes within patients, we reconstruct the timing, likely origins, and natural history of superinfecting strains. We uncover evidence for within-host recombination between genetically distinct HCMV strains, observing the loss of the parental virus containing the nonrecombinant fragment. The data suggest selection for strains containing the recombinant fragment, generating testable hypotheses about HCMV evolution and pathogenesis. These results highlight that high HCMV diversity present in some samples is caused by coinfection with multiple distinct strains and provide reassurance that within the host diversity for single-strain HCMV infections is no greater than for other herpesviruses.


Assuntos
Citomegalovirus/genética , Recombinação Genética/genética , Superinfecção/genética , Sequência de Bases/genética , Criança , Pré-Escolar , Infecções por Citomegalovirus/virologia , DNA Viral/genética , Feminino , Variação Genética/genética , Genoma Humano/genética , Genoma Viral , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Hospedeiro Imunocomprometido/genética , Lactente , Recém-Nascido , Masculino , Análise de Sequência de DNA/métodos
15.
J Gen Virol ; 102(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34704922

RESUMO

Members of the family Herpesviridae have enveloped, spherical virions with characteristic complex structures consisting of symmetrical and non-symmetrical components. The linear, double-stranded DNA genomes of 125-241 kbp contain 70-170 genes, of which 43 have been inherited from an ancestral herpesvirus. In general, herpesviruses have coevolved with and are highly adapted to their hosts, which comprise many mammalian, avian and reptilian species. Following primary infection, they are able to establish lifelong latent infection, during which there is limited viral gene expression. Severe disease is usually observed only in the foetus, the very young, the immunocompromised or following infection of an alternative host. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Herpesviridae, which is available at ictv.global/report/herpesviridae.


Assuntos
Genoma Viral , Herpesviridae , Animais , Evolução Molecular , Herpesviridae/classificação , Herpesviridae/genética , Herpesviridae/fisiologia , Herpesviridae/ultraestrutura , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Adaptação ao Hospedeiro , Vírion/química , Vírion/ultraestrutura , Latência Viral , Replicação Viral
16.
PLoS Pathog ; 15(11): e1008076, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31725813

RESUMO

During latent infections with herpes simplex virus 1 (HSV-1), viral transcription is restricted and the genomes are mostly maintained in silenced chromatin, whereas in lytically infected cells all viral genes are transcribed and the genomes are dynamically chromatinized. Histones in the viral chromatin bear markers of silenced chromatin at early times in lytic infection or of active transcription at later times. The virion protein VP16 activates transcription of the immediate-early (IE) genes by recruiting transcription activators and chromatin remodelers to their promoters. Two IE proteins, ICP0 and ICP4 which modulate chromatin epigenetics, then activate transcription of early and late genes. Although chromatin is involved in the mechanism of activation of HSV- transcription, its precise role is not entirely understood. In the cellular genome, chromatin dynamics often modulate transcription competence whereas promoter-specific transcription factors determine transcription activity. Here, biophysical fractionation of serially digested HSV-1 chromatin followed by short-read deep sequencing indicates that nuclear HSV-1 DNA has different biophysical properties than protein-free or encapsidated HSV-1 DNA. The entire HSV-1 genomes in infected cells were equally accessible. The accessibility of transcribed or non-transcribed genes under any given condition did not differ, and each gene was entirely sampled in both the most and least accessible chromatin. However, HSV-1 genomes fractionated differently under conditions of generalized or restricted transcription. Approximately 1/3 of the HSV-1 DNA including fully sampled genes resolved to the most accessible chromatin when HSV-1 transcription was active, but such enrichment was reduced to only 3% under conditions of restricted HSV-1 transcription. Short sequences of restricted accessibility separated genes with different transcription levels. Chromatin dynamics thus provide a first level of regulation on HSV-1 transcription, dictating the transcriptional competency of the genomes during lytic infections, whereas the transcription of individual genes is then most likely activated by specific transcription factors. Moreover, genes transcribed to different levels are separated by short sequences with limited accessibility.


Assuntos
Cromatina/metabolismo , Regulação Viral da Expressão Gênica , Genes Virais , Genoma Viral , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Replicação Viral , Animais , Chlorocebus aethiops , Cromatina/genética , Herpes Simples/genética , Humanos , Células Vero
17.
Mol Biol Evol ; 36(11): 2512-2521, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31273385

RESUMO

Epstein-Barr virus (EBV) is one of the most common viral infections in humans and persists within its host for life. EBV therefore represents an extremely successful virus that has evolved complex strategies to evade the host's innate and adaptive immune response during both initial and persistent stages of infection. Here, we conducted a comparative genomics analysis on 223 whole genome sequences of worldwide EBV strains. We recover extensive genome-wide linkage disequilibrium (LD) despite pervasive genetic recombination. This pattern is explained by the global EBV population being subdivided into three main subpopulations, one primarily found in East Asia, one in Southeast Asia and Oceania, and the third including most of the other globally distributed genomes we analyzed. Additionally, sites in LD were overrepresented in immunogenic genes. Taken together, our results suggest that host immune selection and local adaptation to different human host populations has shaped the genome-wide patterns of genetic diversity in EBV.

18.
J Virol ; 93(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30305358

RESUMO

Transcriptome profiling has become routine in studies of many biological processes. However, the favored approaches such as short-read Illumina RNA sequencing are giving way to long-read sequencing platforms better suited to interrogating the complex transcriptomes typical of many RNA and DNA viruses. Here, we provide a guide-tailored to molecular virologists-to the ins and outs of viral transcriptome sequencing and discuss the strengths and weaknesses of the major RNA sequencing technologies as tools to analyze the abundance and diversity of the viral transcripts made during infection.


Assuntos
Perfilação da Expressão Gênica/métodos , Vírus de RNA/genética , Análise de Sequência de RNA/instrumentação , Biologia Computacional/métodos , Perfilação da Expressão Gênica/instrumentação , Regulação Viral da Expressão Gênica , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Nanoporos , Análise de Sequência de RNA/métodos , Análise de Célula Única
20.
Proc Natl Acad Sci U S A ; 113(17): E2403-12, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27078099

RESUMO

Varicella-zoster virus (VZV) establishes latency in human sensory and cranial nerve ganglia during primary infection (varicella), and the virus can reactivate and cause zoster after primary infection. The mechanism of how the virus establishes and maintains latency and how it reactivates is poorly understood, largely due to the lack of robust models. We found that axonal infection of neurons derived from hESCs in a microfluidic device with cell-free parental Oka (POka) VZV resulted in latent infection with inability to detect several viral mRNAs by reverse transcriptase-quantitative PCR, no production of infectious virus, and maintenance of the viral DNA genome in endless configuration, consistent with an episome configuration. With deep sequencing, however, multiple viral mRNAs were detected. Treatment of the latently infected neurons with Ab to NGF resulted in production of infectious virus in about 25% of the latently infected cultures. Axonal infection of neurons with vaccine Oka (VOka) VZV resulted in a latent infection similar to infection with POka; however, in contrast to POka, VOka-infected neurons were markedly impaired for reactivation after treatment with Ab to NGF. In addition, viral transcription was markedly reduced in neurons latently infected with VOka compared with POka. Our in vitro system recapitulates both VZV latency and reactivation in vivo and may be used to study viral vaccines for their ability to establish latency and reactivate.


Assuntos
Vacina contra Herpes Zoster/farmacologia , Células-Tronco Neurais/virologia , Ativação Viral , Latência Viral , Células Cultivadas , Imunofluorescência , Herpes Zoster/prevenção & controle , Herpes Zoster/virologia , Herpesvirus Humano 3/fisiologia , Humanos , Técnicas In Vitro , Microfluídica , Ativação Viral/fisiologia , Latência Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA