Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
PLoS Genet ; 20(6): e1011314, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38857306

RESUMO

INTRODUCTION: Glioblastoma (GBM) invasion studies have focused on coding genes, while few studies evaluate long non-coding RNAs (lncRNAs), transcripts without protein-coding potential, for role in GBM invasion. We leveraged CRISPR-interference (CRISPRi) to evaluate invasive function of GBM-associated lncRNAs in an unbiased functional screen, characterizing and exploring the mechanism of identified candidates. METHODS: We implemented a CRISPRi lncRNA loss-of-function screen evaluating association of lncRNA knockdown (KD) with invasion capacity in Matrigel. Top screen candidates were validated using CRISPRi and oligonucleotide(ASO)-mediated knockdown in three tumor lines. Clinical relevance of candidates was assessed via The Cancer Genome Atlas(TCGA) and Genotype-Tissue Expression(GTEx) survival analysis. Mediators of lncRNA effect were identified via differential expression analysis following lncRNA KD and assessed for tumor invasion using knockdown and rescue experiments. RESULTS: Forty-eight lncRNAs were significantly associated with 33-83% decrease in invasion (p<0.01) upon knockdown. The top candidate, LINC03045, identified from effect size and p-value, demonstrated 82.7% decrease in tumor cell invasion upon knockdown, while LINC03045 expression was significantly associated with patient survival and tumor grade(p<0.0001). RNAseq analysis of LINC03045 knockdown revealed that WASF3, previously implicated in tumor invasion studies, was highly correlated with lncRNA expression, while WASF3 KD was associated with significant decrease in invasion. Finally, WASF3 overexpression demonstrated rescue of invasive function lost with LINC03045 KD. CONCLUSION: CRISPRi screening identified LINC03045, a previously unannotated lncRNA, as critical to GBM invasion. Gene expression is significantly associated with tumor grade and survival. RNA-seq and mechanistic studies suggest that this novel lncRNA may regulate invasion via WASF3.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glioblastoma , Invasividade Neoplásica , RNA Longo não Codificante , RNA Longo não Codificante/genética , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Invasividade Neoplásica/genética , Linhagem Celular Tumoral , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Sistemas CRISPR-Cas , Técnicas de Silenciamento de Genes , Movimento Celular/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética
2.
Neuro Oncol ; 26(2): 309-322, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-37716001

RESUMO

BACKGROUND: Effective control of brain metastasis remains an urgent clinical need due a limited understanding of the mechanisms driving it. Although the gain of neuro-adaptive attributes in breast-to-brain metastases (BBMs) has been described, the mechanisms that govern this neural acclimation and the resulting brain metastasis competency are poorly understood. Herein, we define the role of neural-specific splicing factor Serine/Arginine Repetitive Matrix Protein 4 (SRRM4) in regulating microenvironmental adaptation and brain metastasis colonization in breast cancer cells. METHODS: Utilizing pure neuronal cultures and brain-naive and patient-derived BM tumor cells, along with in vivo tumor modeling, we surveyed the early induction of mediators of neural acclimation in tumor cells. RESULTS: When SRRM4 is overexpressed in systemic breast cancer cells, there is enhanced BBM leading to poorer overall survival in vivo. Concomitantly, SRRM4 knockdown expression does not provide any advantage in central nervous system metastasis. In addition, reducing SRRM4 expression in breast cancer cells slows down proliferation and increases resistance to chemotherapy. Conversely, when SRRM4/REST4 levels are elevated, tumor cell growth is maintained even in nutrient-deprived conditions. In neuronal coculture, decreasing SRRM4 expression in breast cancer cells impairs their ability to adapt to the brain microenvironment, while increasing SRRM4/RE-1 Silencing Transcription Factor (REST4) levels leads to greater expression of neurotransmitter and synaptic signaling mediators and a significant colonization advantage. CONCLUSIONS: Collectively, our findings identify SRRM4 as a regulator of brain metastasis colonization, and a potential therapeutic target in breast cancer.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Proteínas do Tecido Nervoso/metabolismo , Neoplasias Encefálicas/secundário , Neurônios/patologia , Linhagem Celular Tumoral , Microambiente Tumoral
3.
Cancer Rep (Hoboken) ; 5(4): e1351, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33635590

RESUMO

BACKGROUND: Elevated basal cortisol levels are present in women with primary and metastatic breast cancer. Although cortisol's potential role in breast-to-brain metastasis has yet to be sufficiently studied, prior evidence indicates that it functions as a double-edged sword-cortisol induces breast cancer metastasis in vivo, but strengthens the blood-brain-barrier (BBB) to protect the brain from microbes and peripheral immune cells. AIMS: In this study, we provide a novel examination on whether cortisol's role in tumor invasiveness eclipses its supporting role in strengthening the CNS barriers. We expanded our study to include the blood-cerebrospinal fluid barrier (BCSFB), an underexamined site of tumor entry. METHODS AND RESULTS: Utilizing in vitro BBB and BCSFB models to measure barrier strength in the presence of hydrocortisone (HC). We established that lung tumor cells migrate through both CNS barriers equally while breast tumors cells preferentially migrate through the BCSFB. Furthermore, HC treatment increased breast-to-brain metastases (BBM) but not primary breast tumor migratory capacity. When examining the transmigration of breast cancer cells across the BCSFB, we demonstrate that HC induces increased traversal of BBM but not primary breast cancer. We provide evidence that HC increases tightness of the BCSFB akin to the BBB by upregulating claudin-5, a tight junction protein formerly acknowledged as exclusive to the BBB. CONCLUSION: Our findings indicate, for the first time that increased cortisol levels facilitate breast-to-brain metastasis through the BCSFB-a vulnerable point of entry which has been typically overlooked in brain metastasis. Our study suggests cortisol plays a pro-metastatic role in breast-to-brain metastasis and thus caution is needed when using glucocorticoids to treat breast cancer patients.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Segunda Neoplasia Primária , Barreira Hematoencefálica/metabolismo , Encéfalo , Neoplasias da Mama/metabolismo , Feminino , Humanos , Hidrocortisona/metabolismo , Hidrocortisona/farmacologia
4.
Neuro Oncol ; 24(6): 914-924, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34932815

RESUMO

BACKGROUND: Brain metastases (BM) are responsible for neurological decline and poor overall survival. Although the pro-metastatic roles of glial cells, and the acquisition of neuronal attributes in established BM tumors have been described, there are no studies that investigate the initial interplay between neurons and brain-seeking tumor cells. The aim of this study was to characterize early tumor-neuron interactions and the induced CNS-adaptive changes in tumor cells prior to macro-colonization. METHODS: Utilizing pure neuronal cultures and brain-naïve and patient-derived BM tumor cells, we surveyed the early induction of mediators of neurotransmitter (NT) and synaptic signaling in breast and lung tumor cells. Reliance on microenvironmental GABA in breast-to-brain metastatic cells (BBMs) was assessed in vitro and in vivo. RESULTS: Coculture with neurons induces early expression of classical NT receptor genes (HTR4, GRIA2, GRIN2B, GRM4, GRM8, DRD1) and neuronal synaptic mediators (CNR1, EGR2, ARC, NGFR, NRXN1) in breast and lung cancer cells. NT-dependent classification of tumor cells within the neuronal niche shows breast cancer cells become GABAergic responsive brain metastases (GRBMs) and transition from relying on autocrine GABA, to paracrine GABA from adjacent neurons; while autocrine Dopaminergic breast and lung tumor cells persist. In vivo studies confirm reliance on paracrine GABA is an early CNS-acclimation strategy in breast cancer. Moreover, neuronal contact induces early resurgence in Reelin expression in tumor cells through epigenetic activation, facilitating CNS adaptation. CONCLUSION: Tumor-neuron interactions allow for CNS adaptation early in the course of brain metastasis.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Neoplasias Pulmonares , Neoplasias Encefálicas/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neurônios/patologia , Neurotransmissores/metabolismo , Ácido gama-Aminobutírico/metabolismo
5.
J Neurosurg ; 136(1): 88-96, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34271545

RESUMO

OBJECTIVE: Brain metastasis is the most common intracranial neoplasm. Although anatomical spatial distributions of brain metastasis may vary according to primary cancer subtype, these patterns are not understood and may have major implications for treatment. METHODS: To test the hypothesis that the spatial distribution of brain metastasis varies according to cancer origin in nonrandom patterns, the authors leveraged spatial 3D coordinate data derived from stereotactic Gamma Knife radiosurgery procedures performed to treat 2106 brain metastases arising from 5 common cancer types (melanoma, lung, breast, renal, and colorectal). Two predictive topographic models (regional brain metastasis echelon model [RBMEM] and brain region susceptibility model [BRSM]) were developed and independently validated. RESULTS: RBMEM assessed the hierarchical distribution of brain metastasis to specific brain regions relative to other primary cancers and showed that distinct regions were relatively susceptible to metastasis, as follows: bilateral temporal/parietal and left frontal lobes were susceptible to lung cancer; right frontal and occipital lobes to melanoma; cerebellum to breast cancer; and brainstem to renal cell carcinoma. BRSM provided probability estimates for each cancer subtype, independent of other subtypes, to metastasize to brain regions, as follows: lung cancer had a propensity to metastasize to bilateral temporal lobes; breast cancer to right cerebellar hemisphere; melanoma to left temporal lobe; renal cell carcinoma to brainstem; and colon cancer to right cerebellar hemisphere. Patient topographic data further revealed that brain metastasis demonstrated distinct spatial patterns when stratified by patient age and tumor volume. CONCLUSIONS: These data support the hypothesis that there is a nonuniform spatial distribution of brain metastasis to preferential brain regions that varies according to cancer subtype in patients treated with Gamma Knife radiosurgery. These topographic patterns may be indicative of the abilities of various cancers to adapt to regional neural microenvironments, facilitate colonization, and establish metastasis. Although the brain microenvironment likely modulates selective seeding of metastasis, it remains unknown how the anatomical spatial distribution of brain metastasis varies according to primary cancer subtype and contributes to diagnosis. For the first time, the authors have presented two predictive models to show that brain metastasis, depending on its origin, in fact demonstrates distinct geographic spread within the central nervous system. These findings could be used as a predictive diagnostic tool and could also potentially result in future translational and therapeutic work to disrupt growth of brain metastasis on the basis of anatomical region.


Assuntos
Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Neoplasias do Sistema Nervoso Central/patologia , Neoplasias/patologia , Adulto , Fatores Etários , Idoso , Algoritmos , Mapeamento Encefálico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias do Sistema Nervoso Central/diagnóstico por imagem , Feminino , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Metástase Neoplásica , Neoplasias/diagnóstico por imagem , Procedimentos Neurocirúrgicos , Valor Preditivo dos Testes , Radiocirurgia , Estudos Retrospectivos
6.
Neurooncol Adv ; 3(Suppl 5): v121-v132, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34859239

RESUMO

Brain metastasis (BrM) is an area of unmet medical need that poses unique therapeutic challenges and heralds a dismal prognosis. The intracranial tumor microenvironment (TME) presents several challenges, including the therapy-resistant blood-brain barrier, a unique immune milieu, distinct intercellular interactions, and specific metabolic conditions, that are responsible for treatment failures and poor clinical outcomes. There is a complex interplay between malignant cells that metastasize to the central nervous system (CNS) and the native TME. Cancer cells take advantage of vascular, neuronal, immune, and anatomical vulnerabilities to proliferate with mechanisms specific to the CNS. In this review, we discuss unique aspects of the TME in the context of brain metastases and pathways through which the TME may hold the key to the discovery of new and effective therapies for patients with BrM.

7.
Curr Protoc ; 1(6): e140, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34170630

RESUMO

Patient-derived cells from surgical resections are of paramount importance to brain tumor research. It is well known that there is cellular and microenvironmental heterogeneity within a single tumor mass. Thus, current established protocols for propagating tumor cells in vitro are limiting because resections obtained from conventional singular samples limit the diversity in cell populations and do not accurately model the heterogeneous tumor. Utilization of discarded tissue obtained from cavitron ultrasonic surgical aspirator (CUSA) of the whole tumor mass allows for establishing novel cell lines in vitro from the entirety of the tumor, thereby creating an accurate representation of the heterogeneous population of cells originally present in the tumor. Furthermore, while others have described protocols for establishing patient tumor lines once tissue has arrived in the research lab, a primer from the operating room (OR) to the research lab has not been described before. This is integral, as basic research scientists need to understand the surgical environment of the OR, including the methods utilized to obtain a patient's tumor resection, in order to more accurately model cancer biology in laboratory. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Establishment of brain tumor cell lines from patient-derived CUSA samples: processing brain tumor sample from the OR to the lab Support Protocol 1: Sterilization of microsurgical tools in preparation for dissection Support Protocol 2: Collagen coating of tissue culture flasks Basic Protocol 2: Selection of tumor cells in vitro Support Protocol 3: FACS sorting tumor sample to isolate cancer cells from heterogeneous cell population.


Assuntos
Neoplasias Encefálicas , Terapia por Ultrassom , Humanos , Laboratórios , Salas Cirúrgicas , Ultrassom
8.
Cell Rep ; 35(13): 109302, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34192534

RESUMO

Medulloblastoma (MB) is a malignant pediatric brain tumor arising in the cerebellum. Although abnormal GABAergic receptor activation has been described in MB, studies have not yet elucidated the contribution of receptor-independent GABA metabolism to MB pathogenesis. We find primary MB tumors globally display decreased expression of GABA transaminase (ABAT), the protein responsible for GABA metabolism, compared with normal cerebellum. However, less aggressive WNT and SHH subtypes express higher ABAT levels compared with metastatic G3 and G4 tumors. We show that elevated ABAT expression results in increased GABA catabolism, decreased tumor cell proliferation, and induction of metabolic and histone characteristics mirroring GABAergic neurons. Our studies suggest ABAT expression fluctuates depending on metabolite changes in the tumor microenvironment, with nutrient-poor conditions upregulating ABAT expression. We find metastatic MB cells require ABAT to maintain viability in the metabolite-scarce cerebrospinal fluid by using GABA as an energy source substitute, thereby facilitating leptomeningeal metastasis formation.


Assuntos
4-Aminobutirato Transaminase/metabolismo , Neoplasias Cerebelares/líquido cefalorraquidiano , Neoplasias Cerebelares/enzimologia , Meduloblastoma/líquido cefalorraquidiano , Meduloblastoma/enzimologia , Meninges/patologia , Microambiente Tumoral , Acetilação , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Feminino , Histona Desacetilases/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Neoplasias Meníngeas/secundário , Camundongos Nus , Mitocôndrias/metabolismo , Neurônios/metabolismo , Fosforilação Oxidativa , Fenótipo , Ratos , Ácido gama-Aminobutírico/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-31615863

RESUMO

Brain metastases (BMs) are responsible for decline in neurological function, reduction in overall quality of life, and mortality from recurrent or untreatable lesions. Advances in diagnostics and imaging have led to increased detection of central nervous system (CNS) metastases in patients with progressive cancers. Improved control of extracranial systemic disease, and the limited ability of current therapeutics to cross the blood-brain barrier (BBB) also contribute to the increase in incidence of brain metastases, as tumor cells seek refuge in the brain. Surgery, chemotherapy, and/or radiation (whole-brain radiation therapy and stereotactic radiation surgery [WBRT/SRS]) are a clinically established treatment paradigm for patients with brain metastases. With the advent of genetic and molecular characterization of tumors and their immune microenvironment, clinical trials seek to include targeted drugs into the therapeutic regimen for eligible patients. Several challenges, like treatment of multiple CNS lesions, superior uptake of chemotherapy into the brain, and trials with multidisciplinary approaches, are now being clinically addressed.


Assuntos
Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/terapia , Antineoplásicos/uso terapêutico , Terapia Combinada , Irradiação Craniana/métodos , Humanos , Qualidade de Vida , Radiocirurgia/métodos
10.
Curr Protoc Stem Cell Biol ; 49(1): e80, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30720927

RESUMO

A population of neural stem cells exists in the adult mammalian central nervous system. Purification and characterization of neurospheres provide valuable tools to study the regulation and differentiation of neural stem cells both in vitro and in vivo. Successful stimulation and production of neurospheres can ultimately be used for therapeutic purposes. The currently available methods are limited by their poor yield and the large number of animals required to compensate for that. Here, we describe a procedure to purify neurospheres from adult mouse whole brain. We provide detailed steps on how to propagate, passage, and maintain the adult neurospheres, and how to differentiate the pure neurospheres into the lineage of interest. Using this method, neurospheres can be easily derived from adult mouse whole brain. The derived adult neurospheres maintain their homogenous undifferentiated status while retaining their differentiation potential. This new protocol facilitates adult neurospheres isolation, purification, maintenance, and differentiation. © 2019 by John Wiley & Sons, Inc.


Assuntos
Encéfalo/citologia , Técnicas de Cultura de Células/métodos , Separação Celular/métodos , Células-Tronco Neurais/citologia , Neurônios/citologia , Animais , Células Cultivadas , Camundongos
11.
Artigo em Inglês | MEDLINE | ID: mdl-27042213

RESUMO

BACKGROUND: Hyaluronan (HA) is a ubiquitous extracellular matrix (ECM) glycosaminoglycan synthesized by three different enzymes, hyaluronan synthase (HAS)1, 2, and 3. HA synthesis mediated by HAS3 promotes inflammation and is pathogenic in animal models of human lung and intestinal disease. Liver fibrosis is a common endpoint to chronic liver injury and inflammation for which there is no cure. Although plasma HA is a commonly used biomarker for liver disease, if and how HA contributes to disease pathogenesis remains unclear. Here, we tested the hypothesis that HA synthesized by HAS3 enhances inflammation and fibrosis. To test this hypothesis, we exposed wild-type or Has3-/- mice to carbon tetrachloride (CCl4) once (acute) or ten (chronic) times. RESULTS: HAS3-deficient mice exhibited increased hepatic injury and inflammatory chemokine production 48 h after acute CCl4; this was associated with a threefold reduction in plasma HA levels and alterations in the proportions of specific molecular weight HA polymer pools. Hepatic accumulation of fibrosis-associated transcripts was also greater in livers from HAS3-deficient mice compared to controls after acute CCl4 exposure. Surprisingly, fibrosis was not different between genotypes. Hepatic matrix metalloproteinase (MMP)13 mRNA and MMP13 activity was greater in livers from Has3-null mice after chronic CCl4; this was prevented by a MMP13-specific inhibitor. Collectively, these data suggest that Has3, or more likely HA produced by HAS3, limits hepatic inflammation after acute injury and attenuates MMP13-mediated matrix metabolism after chronic injury. CONCLUSIONS: These data suggest that HA should be investigated further as a novel therapeutic target for acute and chronic liver disease.

12.
Biomolecules ; 6(1): 5, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26751492

RESUMO

Wound healing consists of three overlapping phases: inflammation, proliferation, and matrix synthesis and remodeling. Prolonged alcohol abuse can cause liver fibrosis due to deregulated matrix remodeling. Previous studies demonstrated that moderate ethanol feeding enhances liver fibrogenic markers and frank fibrosis independent of differences in CCl4-induced liver injury. Our objective was to determine whether or not other phases of the hepatic wound healing response were affected by moderate ethanol after CCl4 exposure. Mice were fed moderate ethanol (2% v/v) for two days and then were exposed to CCl4 and euthanized 24-96 h later. Liver injury was not different between pair- and ethanol-fed mice; however, removal of necrotic tissue was delayed after CCl4-induced liver injury in ethanol-fed mice. Inflammation, measured by TNFα mRNA and protein and hepatic Ly6c transcript accumulation, was reduced and associated with enhanced hepatocyte apoptosis after ethanol feeding. Hepatocytes entered the cell cycle equivalently in pair- and ethanol-fed mice after CCl4 exposure, but hepatocyte proliferation was prolonged in livers from ethanol-fed mice. CCl4-induced hepatic stellate cell activation was increased and matrix remodeling was prolonged in ethanol-fed mice compared to controls. Taken together, moderate ethanol affected each phase of the wound healing response to CCl4. These data highlight previously unknown effects of moderate ethanol exposure on hepatic wound healing after acute hepatotoxicant exposure.


Assuntos
Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Etanol/administração & dosagem , Cicatrização/efeitos dos fármacos , Animais , Antígenos Ly/genética , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Etanol/efeitos adversos , Feminino , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Camundongos , Fator de Necrose Tumoral alfa/genética
14.
3 Biotech ; 3(4): 267-275, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28324584

RESUMO

In the present study, biotransformation of Remazol Orange 3R (RO3R) was studied using well-known bacterial isolate Pseudomonas aeruginosa strain BCH. The dye was decolorized up to 98 % within 15 min. The induction in the level of various oxidoreductive enzymes viz. laccase, tyrosinase, veratryl alcohol oxidase and DCIP reductase were observed in the cells obtained after decolorization of RO3R, which supports their role in decolorization. The metabolites of RO3R obtained after biodegradation were identified and characterized by various analytical techniques viz, HPLC, FTIR, and GC-MS. The RO3R was transformed to the N-(7 amino 8 hydroxy-napthalen-2yl) actamide (m/z, 198), Acetamide (m/z, 59) and Napthalen-1-ol (m/z, 144).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA