Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Circulation ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39355927

RESUMO

BACKGROUND: The heart expresses 2 main subtypes of cAMP-dependent protein kinase (PKA; type I and II) that differ in their regulatory subunits, RIα and RIIα. Embryonic lethality of RIα knockout mice limits the current understanding of type I PKA function in the myocardium. The objective of this study was to test the role of RIα in adult heart contractility and pathological remodeling. METHODS: We measured PKA subunit expression in human heart and developed a conditional mouse model with cardiomyocyte-specific knockout of RIα (RIα-icKO). Myocardial structure and function were evaluated by echocardiography, histology, and ECG and in Langendorff-perfused hearts. PKA activity and cAMP levels were determined by immunoassay, and phosphorylation of PKA targets was assessed by Western blot. L-type Ca2+ current (ICa,L), sarcomere shortening, Ca2+ transients, Ca2+ sparks and waves, and subcellular cAMP were recorded in isolated ventricular myocytes (VMs). RESULTS: RIα protein was decreased by 50% in failing human heart with ischemic cardiomyopathy and by 75% in the ventricles and in VMs from RIα-icKO mice but not in atria or sinoatrial node. Basal PKA activity was increased ≈3-fold in RIα-icKO VMs. In young RIα-icKO mice, left ventricular ejection fraction was increased and the negative inotropic effect of propranolol was prevented, whereas heart rate and the negative chronotropic effect of propranolol were not modified. Phosphorylation of phospholamban, ryanodine receptor, troponin I, and cardiac myosin-binding protein C at PKA sites was increased in propranolol-treated RIα-icKO mice. Hearts from RIα-icKO mice were hypercontractile, associated with increased ICa,L, and [Ca2+]i transients and sarcomere shortening in VMs. These effects were suppressed by the PKA inhibitor, H89. Global cAMP content was decreased in RIα-icKO hearts, whereas local cAMP at the phospholamban/sarcoplasmic reticulum Ca2+ ATPase complex was unchanged in RIα-icKO VMs. RIα-icKO VMs had an increased frequency of Ca2+ sparks and proarrhythmic Ca2+ waves, and RIα-icKO mice had an increased susceptibility to ventricular tachycardia. On aging, RIα-icKO mice showed progressive contractile dysfunction, cardiac hypertrophy, and fibrosis, culminating in congestive heart failure with reduced ejection fraction that caused 50% mortality at 1 year. CONCLUSIONS: These results identify RIα as a key negative regulator of cardiac contractile function, arrhythmia, and pathological remodeling.

2.
Circulation ; 142(2): 161-174, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32264695

RESUMO

BACKGROUND: The cyclic AMP (adenosine monophosphate; cAMP)-hydrolyzing protein PDE4B (phosphodiesterase 4B) is a key negative regulator of cardiac ß-adrenergic receptor stimulation. PDE4B deficiency leads to abnormal Ca2+ handling and PDE4B is decreased in pressure overload hypertrophy, suggesting that increasing PDE4B in the heart is beneficial in heart failure. METHODS: We measured PDE4B expression in human cardiac tissues and developed 2 transgenic mouse lines with cardiomyocyte-specific overexpression of PDE4B and an adeno-associated virus serotype 9 encoding PDE4B. Myocardial structure and function were evaluated by echocardiography, ECG, and in Langendorff-perfused hearts. Also, cAMP and PKA (cAMP dependent protein kinase) activity were monitored by Förster resonance energy transfer, L-type Ca2+ current by whole-cell patch-clamp, and cardiomyocyte shortening and Ca2+ transients with an Ionoptix system. Heart failure was induced by 2 weeks infusion of isoproterenol or transverse aortic constriction. Cardiac remodeling was evaluated by serial echocardiography, morphometric analysis, and histology. RESULTS: PDE4B protein was decreased in human failing hearts. The first PDE4B-transgenic mouse line (TG15) had a ≈15-fold increase in cardiac cAMP-PDE activity and a ≈30% decrease in cAMP content and fractional shortening associated with a mild cardiac hypertrophy that resorbed with age. Basal ex vivo myocardial function was unchanged, but ß-adrenergic receptor stimulation of cardiac inotropy, cAMP, PKA, L-type Ca2+ current, Ca2+ transients, and cell contraction were blunted. Endurance capacity and life expectancy were normal. Moreover, these mice were protected from systolic dysfunction, hypertrophy, lung congestion, and fibrosis induced by chronic isoproterenol treatment. In the second PDE4B-transgenic mouse line (TG50), markedly higher PDE4B overexpression, resulting in a ≈50-fold increase in cardiac cAMP-PDE activity caused a ≈50% decrease in fractional shortening, hypertrophy, dilatation, and premature death. In contrast, mice injected with adeno-associated virus serotype 9 encoding PDE4B (1012 viral particles/mouse) had a ≈50% increase in cardiac cAMP-PDE activity, which did not modify basal cardiac function but efficiently prevented systolic dysfunction, apoptosis, and fibrosis, while attenuating hypertrophy induced by chronic isoproterenol infusion. Similarly, adeno-associated virus serotype 9 encoding PDE4B slowed contractile deterioration, attenuated hypertrophy and lung congestion, and prevented apoptosis and fibrotic remodeling in transverse aortic constriction. CONCLUSIONS: Our results indicate that a moderate increase in PDE4B is cardioprotective and suggest that cardiac gene therapy with PDE4B might constitute a new promising approach to treat heart failure.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Expressão Gênica , Insuficiência Cardíaca/etiologia , Miocárdio/metabolismo , Remodelação Ventricular/genética , Agonistas Adrenérgicos beta/farmacologia , Animais , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Terapia Genética , Vetores Genéticos/genética , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Testes de Função Cardíaca , Humanos , Isoproterenol/farmacologia , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fenótipo , Receptores Adrenérgicos beta/metabolismo , Transdução Genética , Remodelação Ventricular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA