Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Transgenic Res ; 22(3): 477-88, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23080294

RESUMO

The technology of converting lignocellulose to biofuels has advanced swiftly over the past few years, and enzymes are a significant constituent of this technology. In this regard, cost effective production of cellulases has been the focus of research for many years. One approach to reach cost targets of these enzymes involves the use of plants as bio-factories. The application of this technology to plant biomass conversion for biofuels and biobased products has the potential for significantly lowering the cost of these products due to lower enzyme production costs. Cel6A, one of the two cellobiohydrolases (CBH II) produced by Hypocrea jecorina, is an exoglucanase that cleaves primarily cellobiose units from the non-reducing end of cellulose microfibrils. In this work we describe the expression of Cel6A in maize endosperm as part of the process to lower the cost of this dominant enzyme for the bioconversion process. The enzyme is active on microcrystalline cellulose as exponential microbial growth was observed in the mixture of cellulose, cellulases, yeast and Cel6A, Cel7A (endoglucanase), and Cel5A (cellobiohydrolase I) expressed in maize seeds. We quantify the amount accumulated and the activity of the enzyme. Cel6A expressed in maize endosperm was purified to homogeneity and verified using peptide mass finger printing.


Assuntos
Celulose 1,4-beta-Celobiosidase/genética , Celulose 1,4-beta-Celobiosidase/metabolismo , Endosperma/genética , Hypocrea/enzimologia , Zea mays/genética , Celulose/metabolismo , Celulose 1,4-beta-Celobiosidase/isolamento & purificação , Endosperma/enzimologia , Hypocrea/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
2.
Prog Lipid Res ; 45(3): 250-78, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16574237

RESUMO

Phosphatidic acid (PA) has emerged as a new class of lipid mediators involved in diverse cellular functions in plants, animals, and microorganisms. Considerable progress has been made recently on the production, cellular function, and mode of action of PA in the cell. The cellular levels of PA undergo dynamic changes in response to developmental and environmental stimuli. The production of signaling PA is mediated by families of multiple enzymes that regulate the timing, location, amount, and molecular species of PA. A number of PA target proteins have been identified, which include proteins involved in phosphorylation and dephosphorylation of proteins and lipids, as well as in G protein regulation, vesicular trafficking, and metabolism. PA mediates cellular functions through different modes of action, such as membrane tethering, modulation of enzymatic activities, and/or structural effects on cell membranes. The regulatory processes in which PA has been implicated include signaling pathways in cell growth, proliferation, reproduction, and responses to hormones and biotic and abiotic stresses.


Assuntos
Ácidos Fosfatídicos/fisiologia , Transdução de Sinais/fisiologia , Animais , Fenômenos Fisiológicos Celulares , Vesículas Citoplasmáticas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Estresse Oxidativo/fisiologia , Ácidos Fosfatídicos/biossíntese , Fosforilação , Plantas/metabolismo
3.
Phytochemistry ; 67(17): 1907-24, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16843506

RESUMO

Lipid profiling is a targeted metabolomics platform that provides a comprehensive analysis of lipid species with high sensitivity. Profiling based on electrospray ionization tandem mass spectrometry (ESI-MS/MS) provides quantitative data and is adaptable to high throughput analyses. Here we report the profiling of 140 apparent molecular species of polar glycerolipids in Arabidopsis leaves, flower stalks, flowers, siliques, roots, and seeds. Considerable differences in lipid species occur among these organs, providing insights into the different lipid metabolic activities in a specific organ. In addition, comparative profiling between wild-type and a knockout mutant pldalpha1 (locus ID: AT3G15730) provides insight into the metabolic function of phospholipase D (PLD) in different organs. PLDalpha1 contributes significantly to phosphatidic acid (PA) levels in roots, seeds, flowers, and flower stalks, but little to basal PA levels in siliques and leaves. In seeds of the pldalpha1 mutant plants, levels of PA, lysophosphatidylcholine, and lysophosphatidylethanolamine were significantly lower than those of wild-type seeds, suggesting a role for PLDalpha1 in membrane lipid degradation in seeds.


Assuntos
Arabidopsis/metabolismo , Lipídeos/análise , Mutação/genética , Fosfolipase D/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Lipídeos/química , Estrutura Molecular , Ácidos Fosfatídicos/análise , Ácidos Fosfatídicos/química , Fosfolipase D/genética , Fosfolipídeos/análise , Fosfolipídeos/química , Plantas Geneticamente Modificadas , Análise de Componente Principal , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA