Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233495

RESUMO

By incorporating electrically conductive yarns into a waterproof membrane, one can detect epoxy resin cracking or liquid leakage. Therefore, this study examined the electrical conductivity variations of several yarns (metallic or carbon-based) for cracking and water detection. The first observations concerned the detectors' feasibility by investigating their conductivity variations during both their resin implementation processes and their resin cracking. Throughout this experiment, two phenomena were detected: the compression and the separation of the fibres by the resin. In addition, the resin cracking had an important role in decreasing the yarns' conductivity. The second part of this study concerned water detection. Two principles were established and implemented, first with yarns and then with yarns incorporated into the resin. First, the principle of absorption was based on the conductivity variation with the yarns' swelling after contact with water. A short circuit was established by the creation of a conductive path when a drop of water was deposited between two conductive, parallel yarns. Through the influence of the yarns' properties, this study explored the metallic yarns' capacity to better detect water with a short circuit and the ability of the carbon-based yarns to detect water by the principle of absorption.

2.
Biomacromolecules ; 12(5): 1762-71, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21466242

RESUMO

Metallic oxides have been successfully investigated for the recycling of polylactide (PLA) via catalyzed unzipping depolymerization allowing for the selective recovery of lactide monomer. In this contribution, a metallic oxide nanofiller, that is, ZnO, has been dispersed into PLA without detrimental polyester degradation yielding PLA/ZnO nanocomposites directly suitable for producing films and fibers. The nanocomposites were produced by melt-blending two different grades of PLA with untreated ZnO and surface-treated ZnO nanoparticles. The surface treatment by silanization proved to be necessary for avoiding the decrease in molecular weight and thermal and mechanical properties of the filled polyester matrix. Silane-treated ZnO nanoparticles yielded nanocomposites characterized by good mechanical performances (tensile strength in the interval from 55 to 65 MPa), improved thermal stability, and fine nanofiller dispersion, as evidenced by microscopy investigations. PLA/ZnO nanocomposites were further extruded in films and fibers, respectively, characterized by anti-UV and antibacterial properties.


Assuntos
Nanoestruturas , Poliésteres/química , Óxido de Zinco/química , Antibacterianos/farmacologia , Varredura Diferencial de Calorimetria , Cromatografia em Gel , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Poliésteres/farmacologia , Espectrofotometria Ultravioleta , Staphylococcus aureus/efeitos dos fármacos , Termogravimetria , Óxido de Zinco/farmacologia
3.
Nanomaterials (Basel) ; 12(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35010046

RESUMO

In many textile fields, such as industrial structures or clothes, one way to detect a specific liquid leak is the electrical conductivity variation of a yarn. This yarn can be developed using melt spun of Conductive Polymer Composites (CPCs), which blend insulating polymer and electrically conductive fillers. This study examines the influence of the proportions of an immiscible thermoplastic/elastomer blend for its implementation and its water detection. The thermoplastic polymer used for the detection property is the polyamide 6.6 (PA6.6) filled with enough carbon nanotubes (CNT) to exceed the percolation threshold. However, the addition of fillers decreases the polymer fluidity, resulting in the difficulty to implement the CPC. Using an immiscible polymers blend with an elastomer, which is a propylene-based elastomer (PBE) permits to increase this fluidity and to create a flexible conductive monofilament. After characterizations (morphology, rheological and mechanical) of this blend (PA6.6CNT/PBE) in different proportions, two principles of water detection are established and carried out with the monofilaments: the principle of absorption and the short circuit. It is found that the morphology of the immiscible polymer blend had a significant role in the water detection.

4.
Polymers (Basel) ; 13(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418932

RESUMO

This work presents the effect of a melt-spinning process on the degradation behavior of bioresorbable and immiscible poly(d,l-lactide) (PLA) and polycaprolactone (PCL) polymer blends. A large range of these blends, from PLA90PCL10 (90 wt% PLA and 10 wt% PCL) to PLA60PCL40 in increments of 10%, was processed via extrusion (diameter monofilament: ∅ ≈ 1 mm) and melt spinning (80 filaments: 50 to 70 µm each) to evaluate the impact of the PCL ratio and then melt spinning on the hydrolytic degradation of PLA, which allowed for highlighting the potential of a textile-based scaffold in bioresorbable implants. The morphologies of the structures were investigated via extracting PCL with acetic acid and scanning electron microscopy observations. Then, they were immersed in a Dulbecco's Modified Eagle Medium (DMEM) media at 50 °C for 35 days and their properties were tested in order to evaluate the relation between the morphology and the evolution of the crystallinity degree and the mechanical and physical properties. As expected, the incorporation of PCL into the PLA matrix slowed down the hydrolytic degradation. It was shown that the degradation became heterogeneous with a small ratio of PCL. Finally, melt spinning had an impact on the morphology, and consequently, on the other properties over time.

5.
Polymers (Basel) ; 11(11)2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698870

RESUMO

In many application fields, such as medicine or sports, heating textiles use electrically conductive multifilaments. This multifilament can be developed from conductive polymer composites (CPC), which are blends of an insulating polymer filled with electrically conductive particles. However, this multifilament must have filler content above the percolation threshold, which leads to an increase of the viscosity and problems during the melt spinning process. Immiscible blends between two polymers (one being a CPC) can be used to allow the reduction of the global filler content if each polymer is co-continuous with a selective localization of the fillers in only one polymer. In this study, three immiscible blends were developed between polypropylene, polyethylene terephthalate, or polyamide 6 and a filled polycaprolactone with carbon nanotubes. The morphology of each blend at different ratios was studied using models of co-continuity and prediction of fillers localization according to viscosity, interfacial energy, elastic modulus, and loss factor of each polymer. This theoretical approach was compared to experimental values to find out differences between methods. The electrical properties (electrical conductivity and Joule effect) were also studied. The co-continuity, the selective localization in the polycaprolactone, and the Joule effect were only exhibited by the polypropylene/filled polycaprolactone 50/50 wt.%.

6.
J Nanosci Nanotechnol ; 8(6): 3176-83, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18681065

RESUMO

While carbon nanotubes have been used for a variety of purposes, it was not known whether they can improve tribological properties of polymers. Polyamide 6 (PA6) has been reinforced with 0.2, 0.5 and 1.0 wt% of multiwall carbon nanotubes (MWCNTs) by melt mixing process and characterized by scanning electron microscopy (SEM), transmission electron microscopy, thermogravimetric analysis (TGA), scratching, sliding wear and tensile testing. TGA results for the air atmosphere show that MWCNTs shift the onset of thermal degradation to higher temperatures. Sliding wear tests show that the penetration depth decreases as the concentration of carbon nanotubes increases. However, the viscoelastic healing is hampered by the MWCNTs presence and the residual depths increase at the same time. Narrower scratch groove widths are seen in SEM for composites with MWCNTs, and scratch hardness increases. Tensile tests show an increase of 27% in the Young modulus value upon addition of 1.0% of MWCNTs. The stress at yield is also higher for the nanocomposites.

7.
Polymers (Basel) ; 10(9)2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30960956

RESUMO

Composites of polypropylene (PP) and water soluble poly(vinyl alcohol) (PVA) can become an environmentally friendly precursor in preparing porous material, and their biphasic morphology needs to be manipulated. In this work, PP-PVA extrudates were prepared with a twin-screw extruder, and different PP/PVA ratios were employed to manipulate the morphology of the blends. Afterwards, different silicas were imbedded within the blends to further regulate the biphasic microstructure. PVA continuity, as a vital parameter in obtaining porous material, was determined by selective extraction measurement, and PP-PVA biphasic morphology was characterized by scanning microscopy analyses (SEM). Rheological measurement was also performed to correlate the microstructure evolution of the blends. First, it was found that with the increment of PVA proportion, PVA continuity is raised gradually, and the microstructure of blends containing 40⁻50 wt % of PVA is approaching co-continuous. Second, the localization of silicas was predicted based on the wettability of silica and polymers, and it was also confirmed by TEM that different silicas showed selective distribution. It is inspiring that R972 nanoparticles were found mainly distributed at the interface, which gives a possibility in preparing a surface-modified porous material. The shape distribution and average size of PVA nodules were examined by analyzing the SEM images. It is indicated that silicas with different wettabilities play disparate roles in tuning the biphasic microstructures, leading to heterogeneous PVA continuity.

8.
Polymers (Basel) ; 8(7)2016 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-30974546

RESUMO

A microencapsulated flame retardant was used in order to produce a flame retardant nonwoven substrate. Melamine-formaldehyde polymer-shell microcapsules, containing Afflamit® PLF 280 (resorcinol bis(diphenyl phosphate)) as the core substance, were coated by an outer thermoplastic wall (polystyrene (PS) or poly(methyl methacrylate)), before being applied to a core/sheet-type bi-component PET/co-PET spunbond nonwoven substrate using impregnation. The outer wall of the microcapsules was heated to the softening temperature of the thermoplastic shell in order to be bonded onto the textile fibres. The thermal stability of the microcapsules was examined using thermogravimetric analysis. The textile samples were observed with a scanning electron microscope, and the flame retardancy performance was evaluated using the NF P92-504 standard. The results show that the composition of the outer polymeric shell affected the thermal stability of the microcapsules, since the particles with a PS shell are more stable. Furthermore, the microcapsules were more located at the nonwoven surface without affecting the thickness of the samples. Based on the results of the NF P92-504 test, the flame spread rate was relatively low for all of the tested formulations. Only the formulation with a low content of PS was classified M2 while the others were M3.

9.
Appl Ergon ; 42(6): 792-800, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21277564

RESUMO

This study reports on an experimental investigation of physical properties on the textile thermal comfort. Textile properties, such as thickness, relative porosity, air permeability, moisture regain, thermal conductivity, drying time and water-vapour transmission rate have been considered and correlated to the thermal and vapour resistance, permeability index, thermal effusivity and moisture management capability in order to determine the overall comfort performance of underwear fabrics. The results suggested that the fibre type, together with moisture regain and knitted structure characteristics appeared to affect some comfort-related properties of the fabrics. Additionally, thermal sensations, temperature and skin wetness predicted by Caseto® software for three distinct activity levels were investigated. Results show that the data obtained from this model in transient state are correlated to the thermal conductivity for the temperature and to Ret, moisture regain and drying time for the skin wetness. This provides potential information to determine the end uses of these fabrics according to the selected activity level.


Assuntos
Umidade , Temperatura , Têxteis , Celulose , Vestuário/normas , Fibra de Algodão/normas , Humanos , Poliésteres/normas , Fenômenos Fisiológicos da Pele , Têxteis/normas , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA