Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(6): 3627-3634, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38306714

RESUMO

Constitutional isomerism has been previously demonstrated by one of our laboratories to represent a powerful design strategy for the elaboration of complex functional self-organizations. Here we report the design, synthesis, and characterization of 14 positional, skeletal, and functional constitutional isomeric one-component, multifunctional, sequence-defined, amphiphilic ionizable Janus dendrimers (IAJDs). Their coassembly by simple injection with luciferase mRNA (Luc-mRNA) to form dendrimersome nanoparticles (DNPs) was studied. Subsequently, the resulting DNPs were employed to investigate, with screening experiments, the delivery of Luc-mRNA in vivo. Constitutional isomerism was shown to produce changes of up to two orders of magnitude of the total-body luciferase activity and targeted luciferase activity to the spleen and liver, of up to three orders of magnitude difference in targeted luciferase activity to the lungs and up to six orders of magnitude to lymph nodes. These results indicate that constitutional isomerism may represent not only a simple but also an important synthetic strategy that most probably may impact the activity of all components of synthetic vectors used in RNA-based nanomedicine, including in mRNA vaccines and therapeutics.


Assuntos
Dendrímeros , Nanopartículas , Isomerismo , Dendrímeros/química , RNA Mensageiro/genética , Luciferases
2.
J Am Chem Soc ; 145(34): 18760-18766, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37606244

RESUMO

Delivery of nucleic acids with viral and synthetic vectors has pioneered genetic nanomedicine. Four-component lipid nanoparticles (LNPs) consisting of ionizable lipids, phospholipids, cholesterol, and PEG-conjugated lipids, assembled by microfluidic or T-tube, are the benchmark synthetic vector for delivery of mRNA. One-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimer (IAJD) delivery systems for mRNA were developed by us to complement LNPs. IAJDs consist of multifunctional hydrophilic low-generation dendrons or minidendrons conjugated to hydrophobic dendrons. They were inspired by amphiphilic Janus dendrimers and glycodendrimers. IAJDs coassemble with mRNA into predictable-size vesicles, named dendrimersome nanoparticles (DNPs), by simple injection in acetate buffer, rather than by the complex technology required by LNPs. Assembly of DNPs by simple injection together with sequence design in the hydrophilic and hydrophobic modules of IAJDs endowed rapid screening to access discovery. Molecular design principles for targeted delivery were elaborated when the branching points of IAJDs were constructed from symmetrically and nonsymmetrically substituted plant phenolic acids interconnected by pentaerythritol (PE). Here, we report the first library containing simplified IAJDs constructed in only three steps from symmetrically trialkylated PE in the hydrophobic domain and four different piperazine-based ionizable amines in the hydrophilic part. Rapid coassembly with mRNA and in vivo screening led to the discovery of the two most active IAJDs targeting the spleen, liver, and lymph nodes, one predominantly to the spleen and liver and six delivering equally to the spleen, liver, lung, and lymph nodes. These IAJDs represent the simplest synthetic vectors and the first viral or synthetic system delivering equally to multiple organs.


Assuntos
Dendrímeros , RNA Mensageiro/genética , Fígado , Lipídeos
3.
J Am Chem Soc ; 144(11): 4746-4753, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35263098

RESUMO

Viral and synthetic vectors for delivery of nucleic acids impacted genetic nanomedicine by aiding the rapid development of the extraordinarily efficient Covid-19 vaccines. Access to targeted delivery of nucleic acids is expected to expand the field of nanomedicine beyond most expectations. Both viral and synthetic vectors have advantages and disadvantages. The major advantage of the synthetic vectors is their unlimited synthetic capability. The four-component lipid nanoparticles (LNPs) are the leading nonviral vector for mRNA used by Pfizer and Moderna in Covid-19 vaccines. Their synthetic capacity inspired us to develop a one-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimer (IAJD) delivery system for mRNA. The first experiments on IAJDs provided, through a rational-library design combined with orthogonal-modular accelerated synthesis and sequence control in their hydrophilic part, some of the most active synthetic vectors for the delivery of mRNA to lung. The second experiments employed a similar strategy, generating, by a less complex hydrophilic structure, a library of IAJDs targeting spleen, liver, and lung. Here, we report preliminary studies designing the hydrophobic region of IAJDs by using dissimilar alkyl lengths and demonstrate the unexpectedly important role of the primary structure of the hydrophobic part of IAJDs by increasing up to 90.2-fold the activity of targeted delivery of mRNA to spleen, lymph nodes, liver, and lung. The principles of the design strategy reported here and in previous publications indicate that IAJDs could have a profound impact on the future of genetic nanomedicine.


Assuntos
COVID-19 , Dendrímeros , Nanopartículas , Vacinas contra COVID-19 , Dendrímeros/química , Humanos , Lipossomos , Nanopartículas/química , RNA Mensageiro/química , RNA Mensageiro/genética
4.
J Am Chem Soc ; 143(43): 17975-17982, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34672554

RESUMO

Targeted and efficient delivery of nucleic acids with viral and synthetic vectors is the key step of genetic nanomedicine. The four-component lipid nanoparticle synthetic delivery systems consisting of ionizable lipids, phospholipids, cholesterol, and a PEG-conjugated lipid, assembled by microfluidic or T-tube technology, have been extraordinarily successful for delivery of mRNA to provide Covid-19 vaccines. Recently, we reported a one-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimer (IAJD) synthetic delivery system for mRNA relying on amphiphilic Janus dendrimers and glycodendrimers developed in our laboratory. Amphiphilic Janus dendrimers consist of functional hydrophilic dendrons conjugated to hydrophobic dendrons. Co-assembly of IAJDs with mRNA into dendrimersome nanoparticles (DNPs) occurs by simple injection in acetate buffer, rather than by microfluidic devices, and provides a very efficient system for delivery of mRNA to lung. Here we report the replacement of most of the hydrophilic fragment of the dendron from IAJDs, maintaining only its ionizable amine, while changing its interconnecting group to the hydrophobic dendron from amide to ester. The resulting IAJDs demonstrated that protonated ionizable amines play dual roles of hydrophilic fragment and binding ligand for mRNA, changing delivery from lung to spleen and/or liver. Replacing the interconnecting ester with the amide switched the delivery back to lung. Delivery predominantly to liver is favored by pairs of odd and even alkyl groups in the hydrophobic dendron. This simple structural change transformed the targeted delivery of mRNA mediated with IAJDs, from lung to liver and spleen, and expands the utility of DNPs from therapeutics to vaccines.


Assuntos
Dendrímeros/química , RNA Mensageiro/química , Aminas/química , Animais , Ésteres/química , Interações Hidrofóbicas e Hidrofílicas , Íons/química , Camundongos , Nanopartículas/química , RNA Mensageiro/imunologia , RNA Mensageiro/metabolismo , Vacinas Sintéticas/química , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/metabolismo
5.
J Am Chem Soc ; 143(31): 12315-12327, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34324336

RESUMO

Efficient viral or nonviral delivery of nucleic acids is the key step of genetic nanomedicine. Both viral and synthetic vectors have been successfully employed for genetic delivery with recent examples being DNA, adenoviral, and mRNA-based Covid-19 vaccines. Viral vectors can be target specific and very efficient but can also mediate severe immune response, cell toxicity, and mutations. Four-component lipid nanoparticles (LNPs) containing ionizable lipids, phospholipids, cholesterol for mechanical properties, and PEG-conjugated lipid for stability represent the current leading nonviral vectors for mRNA. However, the segregation of the neutral ionizable lipid as droplets in the core of the LNP, the "PEG dilemma", and the stability at only very low temperatures limit their efficiency. Here, we report the development of a one-component multifunctional ionizable amphiphilic Janus dendrimer (IAJD) delivery system for mRNA that exhibits high activity at a low concentration of ionizable amines organized in a sequence-defined arrangement. Six libraries containing 54 sequence-defined IAJDs were synthesized by an accelerated modular-orthogonal methodology and coassembled with mRNA into dendrimersome nanoparticles (DNPs) by a simple injection method rather than by the complex microfluidic technology often used for LNPs. Forty four (81%) showed activity in vitro and 31 (57%) in vivo. Some, exhibiting organ specificity, are stable at 5 °C and demonstrated higher transfection efficiency than positive control experiments in vitro and in vivo. Aside from practical applications, this proof of concept will help elucidate the mechanisms of packaging and release of mRNA from DNPs as a function of ionizable amine concentration, their sequence, and constitutional isomerism of IAJDs.


Assuntos
Dendrímeros/química , Portadores de Fármacos/química , Nanopartículas/química , RNA Mensageiro/metabolismo , Tensoativos/química , Animais , Dendrímeros/síntese química , Portadores de Fármacos/síntese química , Liberação Controlada de Fármacos , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Estudo de Prova de Conceito , Tensoativos/síntese química
6.
Small ; 17(42): e2102037, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34528384

RESUMO

Atomic design of a 2D-material such as graphene can be substantially influenced by etching, deliberately induced in a transmission electron microscope. It is achieved primarily by overcoming the threshold energy for defect formation by controlling the kinetic energy and current density of the fast electrons. Recent studies have demonstrated that the presence of certain species of atoms can catalyze atomic bond dissociation processes under the electron beam by reducing their threshold energy. Most of the reported catalytic atom species are single atoms, which have strong interaction with single-layer graphene (SLG). Yet, no such behavior has been reported for molecular species. This work shows by experimentally comparing the interaction of alkali and halide species separately and conjointly with SLG, that in the presence of electron irradiation, etching of SLG is drastically enhanced by the simultaneous presence of alkali and iodine atoms. Density functional theory and first principles molecular dynamics calculations reveal that due to charge-transfer phenomena the CC bonds weaken close to the alkali-iodide species, which increases the carbon displacement cross-section. This study ascribes pronounced etching activity observed in SLG to the catalytic behavior of the alkali-iodide species in the presence of electron irradiation.

7.
Drug Dev Res ; 82(3): 364-373, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33210368

RESUMO

Development and progression of metastasis comprises synchronized erroneous expressions of several composite pathways, which are difficult to manage simultaneously with the representative anticancer molecules. The emergence of the drug resistance and the complex interplay between these pathways further potentiates cancer related complexities. Barbiturates and their derivatives present a commendable anticancer profile by attenuating the cancer manifesting metabolic and enzymatic pathways including, but not limited to matrix metalloproteinases, xanthine oxidase, amino peptidases, histone deacetylases, and Ras/mitogen-activated protein kinase. The derivatization and conjugation of barbiturates with pharmacophores delivers a suitable hybrid profile in containing the anomalous expression of these pathways. The present report presents a succinct collation of the barbiturates and their derivatives in managing the various cancer causing pathways.


Assuntos
Antineoplásicos/farmacologia , Barbitúricos/farmacologia , Neoplasias/tratamento farmacológico , Aminopeptidases/metabolismo , Apoptose/efeitos dos fármacos , Histona Desacetilases/metabolismo , Humanos , Metaloproteinases da Matriz/metabolismo , Neoplasias/enzimologia , Xantina Oxidase/metabolismo
8.
Biomacromolecules ; 21(5): 1902-1919, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-31990544

RESUMO

A mixed-ligand effect was observed for mixtures of tris(2-dimethylaminoethyl)amine (Me6-TREN) with tris(2-aminoethyl)amine (TREN) ligands during Cu(0) wire-catalyzed, single-electron transfer-living radical polymerization (SET-LRP) of methyl acrylate (MA) initiated with bis(2-bromopropionyl)ethane (BPE) in DMSO. The external order of reaction of SET-LRP both in the presence of Me6-TREN, TREN and of the mixed-ligand Me6-TREN/TREN, in DMSO, demonstrated a catalytic activity for DMSO similar to that reported in the presence of Cu(0) powder. The catalytic activity of DMSO, with close to 100% chain-end functionality, facilitates the much less expensive TREN to act as a very efficient ligand that is competitive with Me6-TREN and with the mixed-ligand and revitalizes TREN into an excellent ligand. The highest activity of the mixed-ligand at 1/1 ratio between ligands suggests that in addition to a fast exchange between these two ligands, a new single dynamic ligand stabilized by hydrogen-bonding, may generate these results.


Assuntos
Cobre , Dimetil Sulfóxido , Transporte de Elétrons , Ligantes , Polimerização
9.
Biomacromolecules ; 21(1): 250-261, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31566368

RESUMO

The mixed-ligand system consisting of tris(2-aminoethyl)amine (TREN) and tris(2-dimethylaminoethyl)amine (Me6-TREN) during the Cu(0) wire-catalyzed single electron transfer-living radical polymerization (SET-LRP) of methyl acrylate (MA) in "programmed" biphasic mixtures of the dipolar aprotic solvents NMP, DMF, and DMAc with H2O is reported. Kinetic and chain end analysis studies by NMR and MALDI-TOF before and after thio-bromo "click" reaction demonstrated that Me6-TREN complements and makes the less expensive TREN a very efficient ligand in the absence of externally added Cu(II)Br2. Statistical analysis of the kinetic data together with control experiments demonstrated that this mixed-ligand effect enhanced the apparent rate constant of propagation, monomer conversion, and molecular weight control. The most efficient effect was observed at a 1/1 molar ratio between these two ligands, suggesting that in addition to a fast exchange between the two ligands, a new single dynamic ligand generated by hydrogen bonding may be responsible for the mixed ligand observed.


Assuntos
Cobre/química , Etilenodiaminas/química , Polimerização , Catálise , Cinética , Ligantes , Espectroscopia de Ressonância Magnética , Polimetil Metacrilato/química , Solventes/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Água/química
10.
Pol J Radiol ; 84: e54-e60, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31019595

RESUMO

PURPOSE: The purpose of this study was to diagnose and characterise chronic obstructive pulmonary disease (COPD) into its forms, patterns, and severity using MDCT. MATERIAL AND METHODS: In this prospective study, spirometric and MDCT evaluation was done in 52 consecutive patients diagnosed with COPD. In each patient six segmental bronchi were evaluated for CT morphometric indices of bronchial wall thickness (BWT) and wall area percentage (WAP). Quantitative evaluation of emphysema was done using inbuilt software, and volume of emphysematous lung was determined using percentage low attenuation area (LAA). COPD was categorised into the following: emphysema predominant; airway predominant; or mixed phenotypes, and severity grading was assigned as mild, moderate, or severe. RESULTS: Centrilobular was the predominant emphysema pattern occurring alone (36.5%) or in combination with paraseptal changes (34.6%). Among COPD phenotypes, emphysema predominant was the commonest (44.3%), followed by mixed (30.8%), and bronchitis predominant (25.0%). The mean BWT in the airway-predominant group was significantly higher (1.94 ± 0.28 mm) than in the emphysema-predominant subgroup (1.79 ± 0.23 mm) with a p value of 0.005. CONCLUSION: MDCT is an indispensable tool in quantitative and qualitative evaluation of COPD patients. Measurement of CT indices like BWT, WAP, and %LAA can reliably categorise COPD into phenotypes like emphysema predominant, airway predominant, or mixed, which serve as a guide for patient management.

11.
Mol Pharm ; 15(8): 3133-3142, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29996057

RESUMO

PURPOSE: To determine the effect of solution conditions, especially low ionic strength, on the dynamics of molecular diffusion and protein-protein interactions in monoclonal antibody solutions. METHODS: The interaction parameter, kD, was calculated from diffusion data obtained from dynamic light scattering (DLS) measurements performed using a Zetasizer. Theoretical considerations were utilized to evaluate the hard sphere and electrostatic contribution to molecular interactions. RESULTS: At low ionic strengths, repulsions were the dominant forces governing the behavior of both mAbs. As ionic strength increased, attractions contributed to the behavior of mAb1, while repulsions remained the dominant factor affecting mAb3 behavior. Repulsions alone were not sufficient to affect mAb3 viscosity in water, while the presence of repulsions as well as specific attractions was suggested to cause an increase in the viscosity of mAb1 in water compared to 15 mM ionic strength. CONCLUSIONS: Solution physical properties varied for the mAbs investigated. Our findings highlighted the importance of developing a fundamental understanding of interplay of forces governing solution properties of each individual mAb under low ionic strength conditions. Such understanding is critical in enabling successful development of self-buffered formulations.


Assuntos
Anticorpos Monoclonais/química , Soluções Tampão , Química Farmacêutica , Difusão , Concentração de Íons de Hidrogênio , Concentração Osmolar , Espalhamento de Radiação , Soluções/química , Viscosidade
12.
Pharm Res ; 36(1): 19, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30511238

RESUMO

PURPOSE: Tuberculosis (TB) chemotherapy witnesses some major challenges such as poor water-solubility and bioavailability of drugs that frequently delay the treatment. In the present study, an attempt to enhance the aqueous solubility of rifampicin (RMP) was made via co-polymeric nanoparticles approach. HPMA (N-2-hydroxypropylmethacrylamide)-PLGA based polymeric nanoparticulate system were prepared and evaluated against Mycobacterium tuberculosis (MTB) for sustained release and bioavailability of RMP to achieve better delivery. METHODOLOGY: HPMA-PLGA nanoparticles (HP-NPs) were prepared by modified nanoprecipitation technique, RMP was loaded in the prepared NPs. Characterization for particle size, zeta potential, and drug-loading capacity was performed. Release was studied using membrane dialysis method. RESULTS: The average particles size, zeta potential, polydispersity index of RMP loaded HPMA-PLGA-NPs (HPR-NPs) were 260.3 ± 2.21 nm, -6.63 ± 1.28 mV, and 0.303 ± 0.22, respectively. TEM images showed spherical shaped NPs with uniform distribution without any cluster formation. Entrapment efficiency and drug loading efficiency of HPR-NPs were found to be 76.25 ± 1.28%, and 26.19 ± 2.24%, respectively. Kinetic models of drug release including Higuchi and Korsmeyer-peppas demonstrated sustained release pattern. Interaction studies with human RBCs confirmed that RMP loaded HP-NPs are less toxic in this model than pure RMP with (p < 0.05). CONCLUSIONS: The pathogen inhibition studies revealed that developed HPR-NPs were approximately four times more effective with (p < 0.05) than pure drug against sensitive Mycobacterium tuberculosis (MTB) stain. It may be concluded that HPR-NPs holds promising potential for increasing solubility and bioavailability of RMP.


Assuntos
Metacrilatos/administração & dosagem , Metacrilatos/química , Nanopartículas/administração & dosagem , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Rifampina/administração & dosagem , Rifampina/química , Disponibilidade Biológica , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Metacrilatos/síntese química , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Tamanho da Partícula , Rifampina/farmacocinética
13.
AAPS PharmSciTech ; 19(7): 3237-3248, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30191379

RESUMO

In an attempt to deliver multiple drugs through a nanoparticulate platform, the present study was designed to deliver isoniazid (INH) and rifampicin (RMP) together through conjugation/encapsulation approaches using PEG-PLA (polyethylene glycol-poly-L-lactic acid) polymeric micelles. The objective of this study is to identify the preparation and evaluation of PEGylated polymeric micelles with dual drug delivery of INH and RMP for the effective treatment of tuberculosis (TB). Synthesized PEG-PLA di-block-copolymer was further conjugated to INH-forming PEG-PLA-INH (PPI) conjugate. Separately, these conjugates were loaded with RMP building the rifampicin-loaded PEG-PLA-INH polymeric micelles (PMC). The critical micelle concentration (CMC) for the PEG-PLA copolymer was found to be 8.9 ± 0.96 mg/L, and the size and zeta potential were observed to be 187.9 ± 2.68 nm and - 8.15 ± 1.24 mV (0.251 ± 0.042 pdi), respectively. Percent drug loading of PMC was 16.66 ± 1.52 and 23.07 ± 1.05 with entrapment efficiency of 72.30 ± 3.49 and 78.60 ± 2.67% for RMP and INH, respectively. RBC hemolysis capacity of PMC was significantly less than pure RMP and INH. Microplate Alamar blue assay (MABA) along with microscopy showed that the nanoconstructed PMC were more effective than the drugs, and approximately 8-fold reduction in overall minimum inhibitory concentration (MIC) was observed. The prepared duo drug-loaded nano-engineered polymeric micelles were highly effective against sensitive Mycobacterium tuberculosis strains and found to be less hemolytic in nature. The micelles could be further explored (in the future) for in vivo anti-TB studies to establish further to achieve better treatment for TB.


Assuntos
Sistemas de Liberação de Medicamentos , Isoniazida/administração & dosagem , Micelas , Mycobacterium tuberculosis/efeitos dos fármacos , Polietilenoglicóis/química , Rifampina/administração & dosagem , Humanos
14.
Pharm Res ; 34(4): 836-846, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28155072

RESUMO

PURPOSE: To determine the intrinsic viscosity of several monoclonal antibodies (mAbs) under varying pH and ionic strength solution conditions. METHODS: An online viscosity detector attached to HPLC (Viscotek®) was used to determine the intrinsic viscosity of mAbs. The Ross and Minton equation was used for viscosity prediction at high protein concentrations. Bulk viscosity was determined by a Cambridge viscometer. RESULTS: At 15 mM ionic strength, intrinsic viscosity of the mAbs determined by the single-point approach varied from 5.6 to 6.4 mL/g with changes in pH. High ionic strength did not significantly alter intrinsic viscosity, while a significant increase (up to 24.0 mL/g) was observed near zero mM. No difference in bulk viscosity of mAb3 was observed around pH 6 as a function of ionic strength. Data analysis revealed that near zero mM ionic strength limitations of the single-point technique result in erroneously high intrinsic viscosity. CONCLUSIONS: Intrinsic viscosity is a valuable tool that can be used to model baseline viscosity at higher protein concentrations. However, it is not predictive of solution non-ideality at higher protein concentrations. Furthermore, breakdown of numerous assumptions limits the applicability of experimental techniques near zero mM ionic strength conditions. For molecules and conditions studied, the single-point approach produced reliable intrinsic viscosity results at 15 mM. However, this approach must be used with caution near zero mM ionic strength. Data analysis can be used to reveal whether determined intrinsic viscosity is reliable or erroneously high.


Assuntos
Anticorpos Monoclonais/química , Soluções/química , Química Farmacêutica , Cromatografia Líquida de Alta Pressão , Humanos , Concentração de Íons de Hidrogênio , Concentração Osmolar , Solubilidade , Viscosidade
15.
Pharm Res ; 34(11): 2250-2259, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28752485

RESUMO

PURPOSE: To systematically analyze shape and size of soluble irreversible aggregates and the effect of aggregate formation on viscosity. METHODS: Online light scattering, refractive index and viscosity detectors attached to HPLC (Viscotek®) were used to study aggregation, molecular weight and intrinsic viscosity of bovine serum albumin (BSA). Irreversible aggregates were generated by heat stress. Bulk viscosity was measured by an oscillating piston viscometer. RESULTS: As BSA was heated at a higher concentration or for a longer time, the relative contribution, molecular weight and intrinsic viscosity of aggregate species increased. Molecular shape was evaluated from intrinsic viscosity values, and aggregates were estimated to be more asymmetric than monomer species. The presence of aggregates resulted in an increase in bulk viscosity when relative contribution of very high molecular weight species exceeded 10%. CONCLUSIONS: For model system and conditions studied, generation of higher order aggregate species was concluded to be associated with an increase in molecular asymmetry. Elevated viscosity in the presence of aggregated species points to molecular asymmetry being a critical parameter affecting solution viscosity of BSA.


Assuntos
Soroalbumina Bovina/química , Animais , Bovinos , Cromatografia Líquida de Alta Pressão , Difusão Dinâmica da Luz , Temperatura Alta , Hidrodinâmica , Concentração de Íons de Hidrogênio , Estrutura Molecular , Peso Molecular , Agregados Proteicos , Refratometria , Viscosidade
16.
Pharm Res ; 34(9): 1944-1955, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28685299

RESUMO

PURPOSE: First line antiTB drugs have several physical and toxic manifestations which limit their applications. RIF is a hydrophobic drug and has low water solubility and INH is hepatotoxic. The main objective of the study was to synthesize, characterize HPMA-PLA co-polymeric micelles for the effective dual delivery of INH and RIF. METHODS: HPMA-PLA co-polymer and HPMA-PLA-INH (HPI) conjugates were synthesized and characterized by FT-IR and 1H-NMR spectroscopy. Later on RIF loaded HPMA-PLA-INH co-polymeric micelles (PMRI) were formulated and characterized for size, zeta potential and surface morphology (SEM, TEM) as well as critical micellar concentration. The safety was assessed through RBC's interaction study. The prepared PMRI were evaluated through MABA assay against sensitive and resistant strains of M. Tuberculosis. RESULTS: Size, zeta and entrapment efficiency for RIF loaded HPMA-PLA-INH polymeric micelles (PMRI) was 87.64 ± 1.98 nm, -19 ± 1.93 mV and 97.2 ± 1.56%, respectively. In vitro release followed controlled and sustained delivery pattern. Sustained release was also supported by release kinetics. Haemolytic toxicity of HPI and PMRI was 8.57 and 7.05% (p < 0.01, INH Vs PMRI; p < 0.0001, RIF Vs PMRI), respectively. MABA assay (cytotoxicity) based MIC values of PMRI formulation was observed as ≥0.0625 and ≥0.50 µg/mL (for sensitive and resistant strain). The microscopic analysis further confirmed that the delivery approach was effective than pure drugs. CONCLUSIONS: RIF loaded and INH conjugated HPMA-PLA polymeric micelles (PMRI) were more effective against sensitive and resistant M tuberculosis. The developed approach can lead to improved patient compliance and reduced dosing in future, offering improved treatment of tuberculosis.


Assuntos
Antibióticos Antituberculose/administração & dosagem , Preparações de Ação Retardada/química , Metacrilatos/química , Mycobacterium tuberculosis/efeitos dos fármacos , Poliésteres/química , Rifampina/administração & dosagem , Antibióticos Antituberculose/efeitos adversos , Antibióticos Antituberculose/farmacologia , Preparações de Ação Retardada/efeitos adversos , Liberação Controlada de Fármacos , Hemólise/efeitos dos fármacos , Humanos , Cinética , Metacrilatos/efeitos adversos , Micelas , Poliésteres/efeitos adversos , Rifampina/efeitos adversos , Rifampina/farmacologia , Tuberculose/tratamento farmacológico
17.
Mol Pharm ; 13(3): 774-83, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26756795

RESUMO

Liquid-liquid phase separation (LLPS) and aggregation can reduce the physical stability of therapeutic protein formulations. On undergoing LLPS, the protein-rich phase can promote aggregation during storage due to high concentration of the protein. Effect of different excipients on aggregation in protein solution is well documented; however data on the effect of excipients on LLPS is scarce in the literature. In this study, the effect of four excipients (PEG 400, Tween 80, sucrose, and hydroxypropyl beta-cyclodextrin (HPßCD)) on liquid-liquid phase separation and aggregation in a dual variable domain immunoglobulin protein solution was investigated. Sucrose suppressed both LLPS and aggregation, Tween 80 had no effect on either, and PEG 400 increased LLPS and aggregation. Attractive protein-protein interactions and liquid-liquid phase separation decreased with increasing concentration of HPßCD, indicating its specific binding to the protein. However, HPßCD had no effect on the formation of soluble aggregates and fragments in this study. LLPS and aggregation are highly temperature dependent; at low temperature protein exhibits LLPS, at high temperature protein exhibits aggregation, and at an intermediate temperature both phenomena occur simultaneously depending on the solution conditions.


Assuntos
Excipientes/farmacologia , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/metabolismo , Excipientes/química , Humanos , Extração Líquido-Líquido , Soluções Farmacêuticas , Transição de Fase , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica
18.
Mol Pharm ; 13(5): 1431-44, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27017836

RESUMO

Opalescence in protein solutions reduces aesthetic appeal of a formulation and can be an indicator of the presence of aggregates or precursor to phase separation in solution signifying reduced product stability. Liquid-liquid phase separation of a protein solution into a protein-rich and a protein-poor phase has been well-documented for globular proteins and recently observed for monoclonal antibody solutions, resulting in physical instability of the formulation. The present review discusses opalescence and liquid-liquid phase separation (LLPS) for therapeutic protein formulations. A brief discussion on theoretical concepts based on thermodynamics, kinetics, and light scattering is presented. This review also discusses theoretical concepts behind intense light scattering in the vicinity of the critical point termed as "critical opalescence". Both opalescence and LLPS are affected by the formulation factors including pH, ionic strength, protein concentration, temperature, and excipients. Literature reports for the effect of these formulation factors on attractive protein-protein interactions in solution as assessed by the second virial coefficient (B2) and the cloud-point temperature (Tcloud) measurements are also presented. The review also highlights pharmaceutical implications of LLPS in protein solutions.


Assuntos
Iridescência/efeitos dos fármacos , Soluções Farmacêuticas/química , Soluções Farmacêuticas/farmacologia , Proteínas/química , Soluções/química , Soluções/farmacologia , Anticorpos Monoclonais/química , Química Farmacêutica/métodos , Humanos , Concentração de Íons de Hidrogênio , Concentração Osmolar , Temperatura , Termodinâmica
19.
Pharm Res ; 33(1): 155-66, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26286186

RESUMO

PURPOSE: Increased solution viscosity results in difficulties in manufacturing and delivery of therapeutic protein formulations, increasing both the time and production costs, and leading to patient inconvenience. The solution viscosity is affected by the molecular properties of both the solute and the solvent. The purpose of this work was to investigate the effect of size, charge and protein-protein interactions on the viscosity of Dual Variable Domain Immunoglobulin (DVD-Ig(TM)) protein solutions. METHODS: The effect of size of the protein molecule on solution viscosity was investigated by measuring intrinsic viscosity and excluded volume calculations for monoclonal antibody (mAb) and DVD-Ig(TM) protein solutions. The role of the electrostatic charge resulting in electroviscous effects for DVD-Ig(TM) protein was assessed by measuring zeta potential. Light scattering measurements were performed to detect protein-protein interactions affecting solution viscosity. RESULTS: DVD-Ig(TM) protein exhibited significantly higher viscosity compared to mAb. Intrinsic viscosity and excluded volume calculations indicated that the size of the molecule affects viscosity significantly at higher concentrations, while the effect was minimal at intermediate concentrations. Electroviscous contribution to the viscosity of DVD-Ig(TM) protein varied depending on the presence or absence of ions in the solution. In buffered solutions, negative k D and B 2 values indicated the presence of attractive interactions which resulted in high viscosity for DVD-Ig(TM) protein at certain pH and ionic strength conditions. CONCLUSIONS: Results show that more than one factor contributes to the increased viscosity of DVD-Ig(TM) protein and interplay of these factors modulates the overall viscosity behavior of the solution, especially at higher concentrations.


Assuntos
Imunoglobulinas Intravenosas/química , Viscosidade , Algoritmos , Anticorpos Monoclonais/química , Soluções Tampão , Humanos , Concentração de Íons de Hidrogênio , Peso Molecular , Soluções Farmacêuticas , Proteínas/química , Soluções , Eletricidade Estática
20.
Stem Cells ; 32(12): 3209-18, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25100569

RESUMO

The transcription factor, SNAI2, is an inducer of the epithelial to mesenchymal transition (EMT) which mediates cell migration during development and tumor invasion. SNAI2 can also promote the generation of mammary epithelial stem cells from differentiated luminal cells when overexpressed. How SNAI2 regulates these critical and diverse functions is unclear. Here, we show that the levels of SNAI2 expression are important for epidermal cell fate decisions. The expression of SNAI2 was found to be enriched in the basal layer of the interfollicular epidermis where progenitor cells reside and extinguished upon differentiation. Loss of SNAI2 resulted in premature differentiation whereas gain of SNAI2 expression inhibited differentiation. SNAI2 controls the differentiation status of epidermal progenitor cells by binding to and repressing the expression of differentiation genes with increased binding leading to further transcriptional silencing. Thus, the levels of SNAI2 binding to genomic targets determine the differentiation status of epithelial cells with increased levels triggering EMT and dedifferentiation, moderate (physiological) levels promoting epidermal progenitor function, and low levels leading to epidermal differentiation.


Assuntos
Diferenciação Celular/fisiologia , Células Epiteliais/citologia , Transição Epitelial-Mesenquimal/fisiologia , Células-Tronco/citologia , Fatores de Transcrição/metabolismo , Linhagem Celular , Movimento Celular/fisiologia , Células Epiteliais/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição da Família Snail , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA